Lifting of the circuit to a predicate.
Function:
(defun boolean-assert-true-pred (x prime) (and (equal (pfield::mul x (mod 1 prime) prime) (mod 1 prime))))
Theorem:
(defthm definition-satp-to-boolean-assert-true-pred (implies (and (equal (pfcs::lookup-definition '(:simple "boolean_assert_true") pfcs::defs) '(:definition (name :simple "boolean_assert_true") (pfcs::para (:simple "x")) (pfcs::body (:equal (:mul (:var (:simple "x")) (:const 1)) (:const 1))))) (pfield::fep x prime) (primep prime)) (equal (pfcs::definition-satp '(:simple "boolean_assert_true") pfcs::defs (list x) prime) (boolean-assert-true-pred x prime))))