Lifting of the circuit to a predicate.
Theorem:
(defthm field-div-checked-pred-suff (implies (and (pfield::fep w prime) (and (field-inv-checked-pred y w prime) (field-mul-pred x w z prime))) (field-div-checked-pred x y z prime)))
Theorem:
(defthm definition-satp-to-field-div-checked-pred (implies (and (equal (pfcs::lookup-definition '(:simple "field_div_checked") pfcs::defs) '(:definition (name :simple "field_div_checked") (pfcs::para (:simple "x") (:simple "y") (:simple "z")) (pfcs::body (:relation (:simple "field_inv_checked") ((:var (:simple "y")) (:var (:simple "w")))) (:relation (:simple "field_mul") ((:var (:simple "x")) (:var (:simple "w")) (:var (:simple "z"))))))) (equal (pfcs::lookup-definition '(:simple "field_inv_checked") pfcs::defs) '(:definition (name :simple "field_inv_checked") (pfcs::para (:simple "x") (:simple "y")) (pfcs::body (:equal (:mul (:var (:simple "x")) (:var (:simple "y"))) (:const 1))))) (equal (pfcs::lookup-definition '(:simple "field_mul") pfcs::defs) '(:definition (name :simple "field_mul") (pfcs::para (:simple "x") (:simple "y") (:simple "z")) (pfcs::body (:equal (:mul (:var (:simple "x")) (:var (:simple "y"))) (:var (:simple "z")))))) (pfield::fep x prime) (pfield::fep y prime) (pfield::fep z prime) (primep prime)) (equal (pfcs::definition-satp '(:simple "field_div_checked") pfcs::defs (list x y z) prime) (field-div-checked-pred x y z prime))))