• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • C
      • Proof-checker-array
      • Soft
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Ethereum
      • Leftist-trees
      • Java
      • Riscv
      • Taspi
      • Bitcoin
      • Zcash
      • Des
      • X86isa
      • Sha-2
      • Yul
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
      • Axe
      • Poseidon
      • Where-do-i-place-my-book
      • Aleo
        • Aleobft
        • Aleovm
          • Circuits
          • Language
            • Grammar
            • Early-version
              • Abstract-syntax
                • Binary-op
                • Literal
                • Instruction
                • Hash-op
                • Literal-type
                • Operand
                • Unary-op
                • Identifier
                • Commit-op
                • Mapping
                • Function
                • Programdef
                • Finalize-type
                • Closure
                • Register-type
                • Finalizer
                • Value-type
                • Record-type
                • Command
                • Plaintext-type
                • Finalization-option
                • Visibility
                • Register
                • Reference
                • Programid
                • Locator
                • Finalization
                • Entry-type
                • Regaccess
                • Program
                • Interface-type
                • Ident+ptype
                • Ident+etype
                • Function-output
                • Finalize-output
                • Finalize-input
                • Closure-output
                • Closure-input
                • Assert-op
                • Function-input
                • Equal-op
                • Finalize-command
                • Ternary-op
                • Import
                • Ident+ptype-list
                • Operand-list
                • Ident+etype-list
                • Programdef-list
                • Instruction-list
                • Import-list
                • Identifier-list
                  • Identifier-list-fix
                  • Identifier-list-equiv
                  • Identifier-listp
                    • Identifier-listp-basics
                  • Function-output-list
                  • Function-input-list
                  • Finalize-output-list
                  • Finalize-input-list
                  • Command-list
                  • Closure-output-list
                  • Closure-input-list
                • Parser
                • Concrete-syntax
              • Concrete-syntax
          • Leo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Identifier-listp

    Identifier-listp-basics

    Basic theorems about identifier-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: identifier-listp-of-cons

    (defthm identifier-listp-of-cons
      (equal (identifier-listp (cons acl2::a acl2::x))
             (and (identifierp acl2::a)
                  (identifier-listp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-cdr-when-identifier-listp

    (defthm identifier-listp-of-cdr-when-identifier-listp
      (implies (identifier-listp (double-rewrite acl2::x))
               (identifier-listp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-when-not-consp

    (defthm identifier-listp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (identifier-listp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifierp-of-car-when-identifier-listp

    (defthm identifierp-of-car-when-identifier-listp
      (implies (identifier-listp acl2::x)
               (iff (identifierp (car acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-identifier-listp-compound-recognizer

    (defthm true-listp-when-identifier-listp-compound-recognizer
      (implies (identifier-listp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: identifier-listp-of-list-fix

    (defthm identifier-listp-of-list-fix
      (implies (identifier-listp acl2::x)
               (identifier-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-sfix

    (defthm identifier-listp-of-sfix
      (iff (identifier-listp (sfix acl2::x))
           (or (identifier-listp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-insert

    (defthm identifier-listp-of-insert
      (iff (identifier-listp (insert acl2::a acl2::x))
           (and (identifier-listp (sfix acl2::x))
                (identifierp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-delete

    (defthm identifier-listp-of-delete
      (implies (identifier-listp acl2::x)
               (identifier-listp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-mergesort

    (defthm identifier-listp-of-mergesort
      (iff (identifier-listp (mergesort acl2::x))
           (identifier-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-union

    (defthm identifier-listp-of-union
      (iff (identifier-listp (union acl2::x acl2::y))
           (and (identifier-listp (sfix acl2::x))
                (identifier-listp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-intersect-1

    (defthm identifier-listp-of-intersect-1
      (implies (identifier-listp acl2::x)
               (identifier-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-intersect-2

    (defthm identifier-listp-of-intersect-2
      (implies (identifier-listp acl2::y)
               (identifier-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-difference

    (defthm identifier-listp-of-difference
      (implies (identifier-listp acl2::x)
               (identifier-listp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-duplicated-members

    (defthm identifier-listp-of-duplicated-members
      (implies (identifier-listp acl2::x)
               (identifier-listp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-rev

    (defthm identifier-listp-of-rev
      (equal (identifier-listp (rev acl2::x))
             (identifier-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-append

    (defthm identifier-listp-of-append
      (equal (identifier-listp (append acl2::a acl2::b))
             (and (identifier-listp (list-fix acl2::a))
                  (identifier-listp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-rcons

    (defthm identifier-listp-of-rcons
      (iff (identifier-listp (rcons acl2::a acl2::x))
           (and (identifierp acl2::a)
                (identifier-listp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: identifierp-when-member-equal-of-identifier-listp

    (defthm identifierp-when-member-equal-of-identifier-listp
      (and (implies (and (member-equal acl2::a acl2::x)
                         (identifier-listp acl2::x))
                    (identifierp acl2::a))
           (implies (and (identifier-listp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (identifierp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-when-subsetp-equal

    (defthm identifier-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (identifier-listp acl2::y))
                    (equal (identifier-listp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (identifier-listp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (identifier-listp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-set-difference-equal

    (defthm identifier-listp-of-set-difference-equal
     (implies (identifier-listp acl2::x)
              (identifier-listp (set-difference-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-intersection-equal-1

    (defthm identifier-listp-of-intersection-equal-1
      (implies (identifier-listp (double-rewrite acl2::x))
               (identifier-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-intersection-equal-2

    (defthm identifier-listp-of-intersection-equal-2
      (implies (identifier-listp (double-rewrite acl2::y))
               (identifier-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-union-equal

    (defthm identifier-listp-of-union-equal
      (equal (identifier-listp (union-equal acl2::x acl2::y))
             (and (identifier-listp (list-fix acl2::x))
                  (identifier-listp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-take

    (defthm identifier-listp-of-take
      (implies (identifier-listp (double-rewrite acl2::x))
               (iff (identifier-listp (take acl2::n acl2::x))
                    (or (identifierp nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-repeat

    (defthm identifier-listp-of-repeat
      (iff (identifier-listp (repeat acl2::n acl2::x))
           (or (identifierp acl2::x) (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: identifierp-of-nth-when-identifier-listp

    (defthm identifierp-of-nth-when-identifier-listp
      (implies (identifier-listp acl2::x)
               (iff (identifierp (nth acl2::n acl2::x))
                    (< (nfix acl2::n) (len acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-update-nth

    (defthm identifier-listp-of-update-nth
      (implies
           (identifier-listp (double-rewrite acl2::x))
           (iff (identifier-listp (update-nth acl2::n acl2::y acl2::x))
                (and (identifierp acl2::y)
                     (or (<= (nfix acl2::n) (len acl2::x))
                         (identifierp nil)))))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-butlast

    (defthm identifier-listp-of-butlast
      (implies (identifier-listp (double-rewrite acl2::x))
               (identifier-listp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-nthcdr

    (defthm identifier-listp-of-nthcdr
      (implies (identifier-listp (double-rewrite acl2::x))
               (identifier-listp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-last

    (defthm identifier-listp-of-last
      (implies (identifier-listp (double-rewrite acl2::x))
               (identifier-listp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-remove

    (defthm identifier-listp-of-remove
      (implies (identifier-listp acl2::x)
               (identifier-listp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identifier-listp-of-revappend

    (defthm identifier-listp-of-revappend
      (equal (identifier-listp (revappend acl2::x acl2::y))
             (and (identifier-listp (list-fix acl2::x))
                  (identifier-listp acl2::y)))
      :rule-classes ((:rewrite)))