Lex
(lex-repetition-*-comment/ws input) → (mv ret-trees ret-input)
Function:
(defun lex-repetition-*-comment/ws (input) (declare (xargs :guard (nat-listp input))) (let ((__function__ 'lex-repetition-*-comment/ws)) (declare (ignorable __function__)) (b* (((mv tree1 input1) (lex-group-comment/ws input)) ((when (or (reserrp tree1) (= (len input1) (len input)))) (mv nil (nat-list-fix input))) ((mv rest-trees rest-input) (lex-repetition-*-comment/ws input1))) (mv (cons tree1 rest-trees) (nat-list-fix rest-input)))))
Theorem:
(defthm tree-listp-of-lex-repetition-*-comment/ws.ret-trees (b* (((mv ?ret-trees ?ret-input) (lex-repetition-*-comment/ws input))) (abnf::tree-listp ret-trees)) :rule-classes :rewrite)
Theorem:
(defthm nat-listp-of-lex-repetition-*-comment/ws.ret-input (b* (((mv ?ret-trees ?ret-input) (lex-repetition-*-comment/ws input))) (nat-listp ret-input)) :rule-classes :rewrite)
Theorem:
(defthm len-of-lex-repetition-*-comment/ws (b* (((mv ?ret-trees ?ret-input) (lex-repetition-*-comment/ws input))) (<= (len ret-input) (len input))) :rule-classes :linear)
Theorem:
(defthm lex-repetition-*-comment/ws-of-nat-list-fix-input (equal (lex-repetition-*-comment/ws (nat-list-fix input)) (lex-repetition-*-comment/ws input)))
Theorem:
(defthm lex-repetition-*-comment/ws-nat-list-equiv-congruence-on-input (implies (acl2::nat-list-equiv input input-equiv) (equal (lex-repetition-*-comment/ws input) (lex-repetition-*-comment/ws input-equiv))) :rule-classes :congruence)