Lex zero or more underbars.
(lex-repetition-*-underbar input) → (mv trees rest-input)
Function:
(defun lex-repetition-*-underbar (input) (declare (xargs :guard (nat-listp input))) (let ((__function__ 'lex-repetition-*-underbar)) (declare (ignorable __function__)) (b* (((mv tree-underbar1 input-after-underbar1) (abnf::parse-ichars "_" input)) ((when (reserrp tree-underbar1)) (mv nil (nat-list-fix input))) ((mv trees-rest input-after-rest) (lex-repetition-*-underbar input-after-underbar1))) (mv (cons tree-underbar1 trees-rest) input-after-rest))))
Theorem:
(defthm tree-listp-of-lex-repetition-*-underbar.trees (b* (((mv ?trees ?rest-input) (lex-repetition-*-underbar input))) (abnf::tree-listp trees)) :rule-classes :rewrite)
Theorem:
(defthm nat-listp-of-lex-repetition-*-underbar.rest-input (b* (((mv ?trees ?rest-input) (lex-repetition-*-underbar input))) (nat-listp rest-input)) :rule-classes :rewrite)
Theorem:
(defthm len-of-lex-repetition-*-underbar (b* (((mv ?trees ?rest-input) (lex-repetition-*-underbar input))) (<= (len rest-input) (len input))) :rule-classes :linear)
Theorem:
(defthm lex-repetition-*-underbar-of-nat-list-fix-input (equal (lex-repetition-*-underbar (nat-list-fix input)) (lex-repetition-*-underbar input)))
Theorem:
(defthm lex-repetition-*-underbar-nat-list-equiv-congruence-on-input (implies (acl2::nat-list-equiv input input-equiv) (equal (lex-repetition-*-underbar input) (lex-repetition-*-underbar input-equiv))) :rule-classes :congruence)