Fixing function for equal-op structures.
Function:
(defun equal-op-fix$inline (x) (declare (xargs :guard (equal-opp x))) (let ((__function__ 'equal-op-fix)) (declare (ignorable __function__)) (mbe :logic (case (equal-op-kind x) (:is.eq (cons :is.eq (list))) (:is.neq (cons :is.neq (list)))) :exec x)))
Theorem:
(defthm equal-opp-of-equal-op-fix (b* ((new-x (equal-op-fix$inline x))) (equal-opp new-x)) :rule-classes :rewrite)
Theorem:
(defthm equal-op-fix-when-equal-opp (implies (equal-opp x) (equal (equal-op-fix x) x)))
Function:
(defun equal-op-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (equal-opp acl2::x) (equal-opp acl2::y)))) (equal (equal-op-fix acl2::x) (equal-op-fix acl2::y)))
Theorem:
(defthm equal-op-equiv-is-an-equivalence (and (booleanp (equal-op-equiv x y)) (equal-op-equiv x x) (implies (equal-op-equiv x y) (equal-op-equiv y x)) (implies (and (equal-op-equiv x y) (equal-op-equiv y z)) (equal-op-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm equal-op-equiv-implies-equal-equal-op-fix-1 (implies (equal-op-equiv acl2::x x-equiv) (equal (equal-op-fix acl2::x) (equal-op-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm equal-op-fix-under-equal-op-equiv (equal-op-equiv (equal-op-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-equal-op-fix-1-forward-to-equal-op-equiv (implies (equal (equal-op-fix acl2::x) acl2::y) (equal-op-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-equal-op-fix-2-forward-to-equal-op-equiv (implies (equal acl2::x (equal-op-fix acl2::y)) (equal-op-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-op-equiv-of-equal-op-fix-1-forward (implies (equal-op-equiv (equal-op-fix acl2::x) acl2::y) (equal-op-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-op-equiv-of-equal-op-fix-2-forward (implies (equal-op-equiv acl2::x (equal-op-fix acl2::y)) (equal-op-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-op-kind$inline-of-equal-op-fix-x (equal (equal-op-kind$inline (equal-op-fix x)) (equal-op-kind$inline x)))
Theorem:
(defthm equal-op-kind$inline-equal-op-equiv-congruence-on-x (implies (equal-op-equiv x x-equiv) (equal (equal-op-kind$inline x) (equal-op-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-equal-op-fix (consp (equal-op-fix x)) :rule-classes :type-prescription)