Fixing function for expr-sort structures.
(expr-sort-fix x) → new-x
Function:
(defun expr-sort-fix$inline (x) (declare (xargs :guard (expr-sortp x))) (let ((__function__ 'expr-sort-fix)) (declare (ignorable __function__)) (mbe :logic (case (expr-sort-kind x) (:constant (cons :constant (list))) (:nonconst (cons :nonconst (list))) (:location (cons :location (list)))) :exec x)))
Theorem:
(defthm expr-sortp-of-expr-sort-fix (b* ((new-x (expr-sort-fix$inline x))) (expr-sortp new-x)) :rule-classes :rewrite)
Theorem:
(defthm expr-sort-fix-when-expr-sortp (implies (expr-sortp x) (equal (expr-sort-fix x) x)))
Function:
(defun expr-sort-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (expr-sortp acl2::x) (expr-sortp acl2::y)))) (equal (expr-sort-fix acl2::x) (expr-sort-fix acl2::y)))
Theorem:
(defthm expr-sort-equiv-is-an-equivalence (and (booleanp (expr-sort-equiv x y)) (expr-sort-equiv x x) (implies (expr-sort-equiv x y) (expr-sort-equiv y x)) (implies (and (expr-sort-equiv x y) (expr-sort-equiv y z)) (expr-sort-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm expr-sort-equiv-implies-equal-expr-sort-fix-1 (implies (expr-sort-equiv acl2::x x-equiv) (equal (expr-sort-fix acl2::x) (expr-sort-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm expr-sort-fix-under-expr-sort-equiv (expr-sort-equiv (expr-sort-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-expr-sort-fix-1-forward-to-expr-sort-equiv (implies (equal (expr-sort-fix acl2::x) acl2::y) (expr-sort-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-expr-sort-fix-2-forward-to-expr-sort-equiv (implies (equal acl2::x (expr-sort-fix acl2::y)) (expr-sort-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm expr-sort-equiv-of-expr-sort-fix-1-forward (implies (expr-sort-equiv (expr-sort-fix acl2::x) acl2::y) (expr-sort-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm expr-sort-equiv-of-expr-sort-fix-2-forward (implies (expr-sort-equiv acl2::x (expr-sort-fix acl2::y)) (expr-sort-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm expr-sort-kind$inline-of-expr-sort-fix-x (equal (expr-sort-kind$inline (expr-sort-fix x)) (expr-sort-kind$inline x)))
Theorem:
(defthm expr-sort-kind$inline-expr-sort-equiv-congruence-on-x (implies (expr-sort-equiv x x-equiv) (equal (expr-sort-kind$inline x) (expr-sort-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-expr-sort-fix (consp (expr-sort-fix x)) :rule-classes :type-prescription)