Lex a
(lex-1*-decimal-digit input) → (mv trees rest-input)
Function:
(defun lex-1*-decimal-digit (input) (declare (xargs :guard (nat-listp input))) (let ((__function__ 'lex-1*-decimal-digit)) (declare (ignorable __function__)) (b* (((mv tree input) (lex-decimal-digit input)) ((when (reserrp tree)) (mv (reserrf-push tree) input)) ((mv trees input) (lex-*-decimal-digit input))) (mv (cons tree trees) input))))
Theorem:
(defthm tree-list-resultp-of-lex-1*-decimal-digit.trees (b* (((mv ?trees ?rest-input) (lex-1*-decimal-digit input))) (abnf::tree-list-resultp trees)) :rule-classes :rewrite)
Theorem:
(defthm nat-listp-of-lex-1*-decimal-digit.rest-input (b* (((mv ?trees ?rest-input) (lex-1*-decimal-digit input))) (nat-listp rest-input)) :rule-classes :rewrite)
Theorem:
(defthm len-of-lex-1*-decimal-digit-<= (b* (((mv ?trees ?rest-input) (lex-1*-decimal-digit input))) (<= (len rest-input) (len input))) :rule-classes :linear)
Theorem:
(defthm len-of-lex-1*-decimal-digit-< (b* (((mv ?trees ?rest-input) (lex-1*-decimal-digit input))) (implies (not (reserrp trees)) (< (len rest-input) (len input)))) :rule-classes :linear)
Theorem:
(defthm lex-1*-decimal-digit-of-nat-list-fix-input (equal (lex-1*-decimal-digit (nat-list-fix input)) (lex-1*-decimal-digit input)))
Theorem:
(defthm lex-1*-decimal-digit-nat-list-equiv-congruence-on-input (implies (acl2::nat-list-equiv input input-equiv) (equal (lex-1*-decimal-digit input) (lex-1*-decimal-digit input-equiv))) :rule-classes :congruence)