Parse a
(parse-?-comma token input) → (mv tree next-token rest-input)
Function:
(defun parse-?-comma (token input) (declare (xargs :guard (and (abnf::tree-optionp token) (abnf::tree-listp input)))) (let ((__function__ 'parse-?-comma)) (declare (ignorable __function__)) (if (token-stringp "," token) (b* (((pok tree) (parse-symbol "," token input))) (mv (abnf::make-tree-nonleaf :rulename? nil :branches (list (list tree))) token input)) (mv (abnf::make-tree-nonleaf :rulename? nil :branches nil) (abnf::tree-option-fix token) (abnf::tree-list-fix input)))))
Theorem:
(defthm tree-resultp-of-parse-?-comma.tree (b* (((mv ?tree ?next-token ?rest-input) (parse-?-comma token input))) (abnf::tree-resultp tree)) :rule-classes :rewrite)
Theorem:
(defthm tree-optionp-of-parse-?-comma.next-token (b* (((mv ?tree ?next-token ?rest-input) (parse-?-comma token input))) (abnf::tree-optionp next-token)) :rule-classes :rewrite)
Theorem:
(defthm tree-listp-of-parse-?-comma.rest-input (b* (((mv ?tree ?next-token ?rest-input) (parse-?-comma token input))) (abnf::tree-listp rest-input)) :rule-classes :rewrite)
Theorem:
(defthm parsize-of-parse-?-comma (b* (((mv ?tree ?next-token ?rest-input) (parse-?-comma token input))) (<= (parsize next-token rest-input) (parsize token input))) :rule-classes :linear)
Theorem:
(defthm parse-?-comma-of-tree-option-fix-token (equal (parse-?-comma (abnf::tree-option-fix token) input) (parse-?-comma token input)))
Theorem:
(defthm parse-?-comma-tree-option-equiv-congruence-on-token (implies (abnf::tree-option-equiv token token-equiv) (equal (parse-?-comma token input) (parse-?-comma token-equiv input))) :rule-classes :congruence)
Theorem:
(defthm parse-?-comma-of-tree-list-fix-input (equal (parse-?-comma token (abnf::tree-list-fix input)) (parse-?-comma token input)))
Theorem:
(defthm parse-?-comma-tree-list-equiv-congruence-on-input (implies (abnf::tree-list-equiv input input-equiv) (equal (parse-?-comma token input) (parse-?-comma token input-equiv))) :rule-classes :congruence)