Abstract a
(abs-*-input-item trees) → initems
Function:
(defun abs-*-input-item (trees) (declare (xargs :guard (abnf::tree-listp trees))) (let ((__function__ 'abs-*-input-item)) (declare (ignorable __function__)) (b* (((when (endp trees)) nil) ((okf initem) (abs-input-item (car trees))) ((okf initems) (abs-*-input-item (cdr trees)))) (cons initem initems))))
Theorem:
(defthm input-item-list-resultp-of-abs-*-input-item (b* ((initems (abs-*-input-item trees))) (input-item-list-resultp initems)) :rule-classes :rewrite)
Theorem:
(defthm abs-*-input-item-of-tree-list-fix-trees (equal (abs-*-input-item (abnf::tree-list-fix trees)) (abs-*-input-item trees)))
Theorem:
(defthm abs-*-input-item-tree-list-equiv-congruence-on-trees (implies (abnf::tree-list-equiv trees trees-equiv) (equal (abs-*-input-item trees) (abs-*-input-item trees-equiv))) :rule-classes :congruence)