Fixing function for var/const-sort structures.
(var/const-sort-fix x) → new-x
Function:
(defun var/const-sort-fix$inline (x) (declare (xargs :guard (var/const-sortp x))) (let ((__function__ 'var/const-sort-fix)) (declare (ignorable __function__)) (mbe :logic (case (var/const-sort-kind x) (:public (cons :public (list))) (:private (cons :private (list))) (:constant (cons :constant (list))) (:const (cons :const (list)))) :exec x)))
Theorem:
(defthm var/const-sortp-of-var/const-sort-fix (b* ((new-x (var/const-sort-fix$inline x))) (var/const-sortp new-x)) :rule-classes :rewrite)
Theorem:
(defthm var/const-sort-fix-when-var/const-sortp (implies (var/const-sortp x) (equal (var/const-sort-fix x) x)))
Function:
(defun var/const-sort-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (var/const-sortp acl2::x) (var/const-sortp acl2::y)))) (equal (var/const-sort-fix acl2::x) (var/const-sort-fix acl2::y)))
Theorem:
(defthm var/const-sort-equiv-is-an-equivalence (and (booleanp (var/const-sort-equiv x y)) (var/const-sort-equiv x x) (implies (var/const-sort-equiv x y) (var/const-sort-equiv y x)) (implies (and (var/const-sort-equiv x y) (var/const-sort-equiv y z)) (var/const-sort-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm var/const-sort-equiv-implies-equal-var/const-sort-fix-1 (implies (var/const-sort-equiv acl2::x x-equiv) (equal (var/const-sort-fix acl2::x) (var/const-sort-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm var/const-sort-fix-under-var/const-sort-equiv (var/const-sort-equiv (var/const-sort-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-var/const-sort-fix-1-forward-to-var/const-sort-equiv (implies (equal (var/const-sort-fix acl2::x) acl2::y) (var/const-sort-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-var/const-sort-fix-2-forward-to-var/const-sort-equiv (implies (equal acl2::x (var/const-sort-fix acl2::y)) (var/const-sort-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm var/const-sort-equiv-of-var/const-sort-fix-1-forward (implies (var/const-sort-equiv (var/const-sort-fix acl2::x) acl2::y) (var/const-sort-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm var/const-sort-equiv-of-var/const-sort-fix-2-forward (implies (var/const-sort-equiv acl2::x (var/const-sort-fix acl2::y)) (var/const-sort-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm var/const-sort-kind$inline-of-var/const-sort-fix-x (equal (var/const-sort-kind$inline (var/const-sort-fix x)) (var/const-sort-kind$inline x)))
Theorem:
(defthm var/const-sort-kind$inline-var/const-sort-equiv-congruence-on-x (implies (var/const-sort-equiv x x-equiv) (equal (var/const-sort-kind$inline x) (var/const-sort-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-var/const-sort-fix (consp (var/const-sort-fix x)) :rule-classes :type-prescription)