Abstract an
(abs-assignment-statement tree) → stat
Function:
(defun abs-assignment-statement (tree) (declare (xargs :guard (abnf::treep tree))) (let ((__function__ 'abs-assignment-statement)) (declare (ignorable __function__)) (b* (((okf (abnf::tree-list-tuple4 sub)) (abnf::check-tree-nonleaf-4 tree "assignment-statement")) ((okf tree) (abnf::check-tree-list-1 sub.1st)) ((okf left) (abs-expression tree)) ((okf tree) (abnf::check-tree-list-1 sub.2nd)) ((okf op) (abs-assignment-operator tree)) ((okf tree) (abnf::check-tree-list-1 sub.3rd)) ((okf right) (abs-expression tree)) ((okf tree) (abnf::check-tree-list-1 sub.4th)) ((okf &) (abnf::check-tree-ichars tree ";"))) (make-statement-assign :op op :left left :right right))))
Theorem:
(defthm statement-resultp-of-abs-assignment-statement (b* ((stat (abs-assignment-statement tree))) (statement-resultp stat)) :rule-classes :rewrite)
Theorem:
(defthm abs-assignment-statement-of-tree-fix-tree (equal (abs-assignment-statement (abnf::tree-fix tree)) (abs-assignment-statement tree)))
Theorem:
(defthm abs-assignment-statement-tree-equiv-congruence-on-tree (implies (abnf::tree-equiv tree tree-equiv) (equal (abs-assignment-statement tree) (abs-assignment-statement tree-equiv))) :rule-classes :congruence)