Abstract a
(abs-null-character-escape tree) → char
Function:
(defun abs-null-character-escape (tree) (declare (xargs :guard (abnf::treep tree))) (let ((__function__ 'abs-null-character-escape)) (declare (ignorable __function__)) (b* (((okf tree) (abnf::check-tree-nonleaf-1-1 tree "null-character-escape")) ((okf &) (abnf::check-tree-schars tree "\\0"))) (char 0))))
Theorem:
(defthm char-resultp-of-abs-null-character-escape (b* ((char (abs-null-character-escape tree))) (char-resultp char)) :rule-classes :rewrite)
Theorem:
(defthm abs-null-character-escape-of-tree-fix-tree (equal (abs-null-character-escape (abnf::tree-fix tree)) (abs-null-character-escape tree)))
Theorem:
(defthm abs-null-character-escape-tree-equiv-congruence-on-tree (implies (abnf::tree-equiv tree tree-equiv) (equal (abs-null-character-escape tree) (abs-null-character-escape tree-equiv))) :rule-classes :congruence)