Fixing function for name+value structures.
(name+value-fix x) → new-x
Function:
(defun name+value-fix$inline (x) (declare (xargs :guard (name+value-p x))) (let ((__function__ 'name+value-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((name (identifier-fix (cdr (std::da-nth 0 (cdr x))))) (value (value-fix (cdr (std::da-nth 1 (cdr x)))))) (cons :name+value (list (cons 'name name) (cons 'value value)))) :exec x)))
Theorem:
(defthm name+value-p-of-name+value-fix (b* ((new-x (name+value-fix$inline x))) (name+value-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm name+value-fix-when-name+value-p (implies (name+value-p x) (equal (name+value-fix x) x)))
Function:
(defun name+value-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (name+value-p acl2::x) (name+value-p acl2::y)))) (equal (name+value-fix acl2::x) (name+value-fix acl2::y)))
Theorem:
(defthm name+value-equiv-is-an-equivalence (and (booleanp (name+value-equiv x y)) (name+value-equiv x x) (implies (name+value-equiv x y) (name+value-equiv y x)) (implies (and (name+value-equiv x y) (name+value-equiv y z)) (name+value-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm name+value-equiv-implies-equal-name+value-fix-1 (implies (name+value-equiv acl2::x x-equiv) (equal (name+value-fix acl2::x) (name+value-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm name+value-fix-under-name+value-equiv (name+value-equiv (name+value-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-name+value-fix-1-forward-to-name+value-equiv (implies (equal (name+value-fix acl2::x) acl2::y) (name+value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-name+value-fix-2-forward-to-name+value-equiv (implies (equal acl2::x (name+value-fix acl2::y)) (name+value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm name+value-equiv-of-name+value-fix-1-forward (implies (name+value-equiv (name+value-fix acl2::x) acl2::y) (name+value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm name+value-equiv-of-name+value-fix-2-forward (implies (name+value-equiv acl2::x (name+value-fix acl2::y)) (name+value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)