Fixing function for vcscope-dinfo-option structures.
(vcscope-dinfo-option-fix x) → new-x
Function:
(defun vcscope-dinfo-option-fix$inline (x) (declare (xargs :guard (vcscope-dinfo-optionp x))) (let ((__function__ 'vcscope-dinfo-option-fix)) (declare (ignorable __function__)) (mbe :logic (case (vcscope-dinfo-option-kind x) (:some (b* ((get (vcscope-dinfo-fix (std::da-nth 0 (cdr x))))) (cons :some (list get)))) (:none (cons :none (list)))) :exec x)))
Theorem:
(defthm vcscope-dinfo-optionp-of-vcscope-dinfo-option-fix (b* ((new-x (vcscope-dinfo-option-fix$inline x))) (vcscope-dinfo-optionp new-x)) :rule-classes :rewrite)
Theorem:
(defthm vcscope-dinfo-option-fix-when-vcscope-dinfo-optionp (implies (vcscope-dinfo-optionp x) (equal (vcscope-dinfo-option-fix x) x)))
Function:
(defun vcscope-dinfo-option-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (vcscope-dinfo-optionp acl2::x) (vcscope-dinfo-optionp acl2::y)))) (equal (vcscope-dinfo-option-fix acl2::x) (vcscope-dinfo-option-fix acl2::y)))
Theorem:
(defthm vcscope-dinfo-option-equiv-is-an-equivalence (and (booleanp (vcscope-dinfo-option-equiv x y)) (vcscope-dinfo-option-equiv x x) (implies (vcscope-dinfo-option-equiv x y) (vcscope-dinfo-option-equiv y x)) (implies (and (vcscope-dinfo-option-equiv x y) (vcscope-dinfo-option-equiv y z)) (vcscope-dinfo-option-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm vcscope-dinfo-option-equiv-implies-equal-vcscope-dinfo-option-fix-1 (implies (vcscope-dinfo-option-equiv acl2::x x-equiv) (equal (vcscope-dinfo-option-fix acl2::x) (vcscope-dinfo-option-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm vcscope-dinfo-option-fix-under-vcscope-dinfo-option-equiv (vcscope-dinfo-option-equiv (vcscope-dinfo-option-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-vcscope-dinfo-option-fix-1-forward-to-vcscope-dinfo-option-equiv (implies (equal (vcscope-dinfo-option-fix acl2::x) acl2::y) (vcscope-dinfo-option-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-vcscope-dinfo-option-fix-2-forward-to-vcscope-dinfo-option-equiv (implies (equal acl2::x (vcscope-dinfo-option-fix acl2::y)) (vcscope-dinfo-option-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm vcscope-dinfo-option-equiv-of-vcscope-dinfo-option-fix-1-forward (implies (vcscope-dinfo-option-equiv (vcscope-dinfo-option-fix acl2::x) acl2::y) (vcscope-dinfo-option-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm vcscope-dinfo-option-equiv-of-vcscope-dinfo-option-fix-2-forward (implies (vcscope-dinfo-option-equiv acl2::x (vcscope-dinfo-option-fix acl2::y)) (vcscope-dinfo-option-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm vcscope-dinfo-option-kind$inline-of-vcscope-dinfo-option-fix-x (equal (vcscope-dinfo-option-kind$inline (vcscope-dinfo-option-fix x)) (vcscope-dinfo-option-kind$inline x)))
Theorem:
(defthm vcscope-dinfo-option-kind$inline-vcscope-dinfo-option-equiv-congruence-on-x (implies (vcscope-dinfo-option-equiv x x-equiv) (equal (vcscope-dinfo-option-kind$inline x) (vcscope-dinfo-option-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-vcscope-dinfo-option-fix (consp (vcscope-dinfo-option-fix x)) :rule-classes :type-prescription)