Abstract a
(abs-lowercaseletter/decimaldigit tree) → char
Function:
(defun abs-lowercaseletter/decimaldigit (tree) (declare (xargs :guard (abnf::treep tree))) (let ((__function__ 'abs-lowercaseletter/decimaldigit)) (declare (ignorable __function__)) (b* (((okf tree) (abnf::check-tree-nonleaf-1-1 tree nil)) (char (abs-lowercase-letter tree)) ((when (not (reserrp char))) char) (char (abs-decimal-digit-to-char tree)) ((when (not (reserrp char))) char)) (reserrf (list :found-subtree (abnf::tree-info-for-error tree))))))
Theorem:
(defthm character-resultp-of-abs-lowercaseletter/decimaldigit (b* ((char (abs-lowercaseletter/decimaldigit tree))) (character-resultp char)) :rule-classes :rewrite)
Theorem:
(defthm loletter/digit-char-p-of-abs-lowercaseletter/decimaldigit (b* ((?char (abs-lowercaseletter/decimaldigit tree))) (implies (not (reserrp char)) (str::lcletter/digit-char-p char))))
Theorem:
(defthm abs-lowercaseletter/decimaldigit-of-tree-fix-tree (equal (abs-lowercaseletter/decimaldigit (abnf::tree-fix tree)) (abs-lowercaseletter/decimaldigit tree)))
Theorem:
(defthm abs-lowercaseletter/decimaldigit-tree-equiv-congruence-on-tree (implies (abnf::tree-equiv tree tree-equiv) (equal (abs-lowercaseletter/decimaldigit tree) (abs-lowercaseletter/decimaldigit tree-equiv))) :rule-classes :congruence)