• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • C
        • Syntax-for-tools
          • Formalized-subset
          • Mapping-to-language-definition
          • Input-files
          • Compilation-database
            • Comp-db-entry
            • Comp-db-arg
            • Json-to-comp-db-entry
            • Json-to-comp-db-entry-list
            • To-preprocess-db
            • To-preprocess-map
            • Comp-db-arguments-absolute-dirs
            • Comp-db-keep-only-preprocessor-args
            • Json-to-comp-db
            • Json-to-comp-db-arguments
            • Comp-db-relativize-keys
            • Json-to-comp-db-get-exec-and-arguments
            • Preprocess-map-from-comp-file
            • Json-to-comp-db-exec-and-arguments
            • Relativize-path
            • Comp-db-arguments-keep-only-preprocessor-args
            • Comp-db-arguments-escape-for-shell
            • Parse-comp-db
            • Json-to-comp-db-get-directory
            • Json-to-comp-db-get-output
            • Json-to-comp-db-get-file
            • Comp-db-drop-shared
            • Comp-db-drop-non-c
            • Comp-db-arg-list-to-string-list
            • Comp-db-absolute-dirs
            • Comp-db-escape-for-shell
            • Json-to-comp-db-try-parse-short-option
            • Preprocess-db-to-map
            • Comp-db-arg-to-string
            • Comp-db
              • Comp-dbp
                • Comp-db-fix
                • Comp-db-equiv
              • Json-to-comp-db-try-parse-equal-arg
              • Defpreprocess-map-fn
              • String-escape-for-shell
              • Comp-db-arg-list
              • Irr-comp-db-arg
              • Show-warnings
              • *cc-options-space-sep*
              • *cc-options-equal-sep*
              • *cc-options-dir*
            • Printer
            • Output-files
            • Abstract-syntax-operations
            • Implementation-environments
            • Abstract-syntax
            • Concrete-syntax
            • Disambiguation
            • Validation
            • Gcc-builtins
            • Preprocessing
            • Parsing
          • Atc
          • Transformation-tools
          • Language
          • Representation
          • Insertion-sort
          • Pack
        • Proof-checker-array
        • Soft
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Ethereum
        • Leftist-trees
        • Java
        • Riscv
        • Taspi
        • Bitcoin
        • Zcash
        • Des
        • X86isa
        • Sha-2
        • Yul
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Axe
        • Poseidon
        • Where-do-i-place-my-book
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Comp-db

    Comp-dbp

    Recognizer for comp-db.

    Signature
    (comp-dbp x) → *

    Definitions and Theorems

    Function: comp-dbp

    (defun comp-dbp (x)
      (declare (xargs :guard t))
      (if (atom x)
          (eq x nil)
        (and (consp (car x))
             (stringp (caar x))
             (comp-db-entryp (cdar x))
             (comp-dbp (cdr x)))))

    Theorem: comp-dbp-of-revappend

    (defthm comp-dbp-of-revappend
      (equal (comp-dbp (revappend acl2::x acl2::y))
             (and (comp-dbp (list-fix acl2::x))
                  (comp-dbp acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-remove

    (defthm comp-dbp-of-remove
      (implies (comp-dbp acl2::x)
               (comp-dbp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-last

    (defthm comp-dbp-of-last
      (implies (comp-dbp (double-rewrite acl2::x))
               (comp-dbp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-nthcdr

    (defthm comp-dbp-of-nthcdr
      (implies (comp-dbp (double-rewrite acl2::x))
               (comp-dbp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-butlast

    (defthm comp-dbp-of-butlast
      (implies (comp-dbp (double-rewrite acl2::x))
               (comp-dbp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-update-nth

    (defthm comp-dbp-of-update-nth
      (implies (comp-dbp (double-rewrite acl2::x))
               (iff (comp-dbp (update-nth acl2::n acl2::y acl2::x))
                    (and (and (consp acl2::y)
                              (stringp (car acl2::y))
                              (comp-db-entryp (cdr acl2::y)))
                         (or (<= (nfix acl2::n) (len acl2::x))
                             (and (consp nil)
                                  (stringp (car nil))
                                  (comp-db-entryp (cdr nil)))))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-repeat

    (defthm comp-dbp-of-repeat
      (iff (comp-dbp (repeat acl2::n acl2::x))
           (or (and (consp acl2::x)
                    (stringp (car acl2::x))
                    (comp-db-entryp (cdr acl2::x)))
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-take

    (defthm comp-dbp-of-take
      (implies (comp-dbp (double-rewrite acl2::x))
               (iff (comp-dbp (take acl2::n acl2::x))
                    (or (and (consp nil)
                             (stringp (car nil))
                             (comp-db-entryp (cdr nil)))
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-union-equal

    (defthm comp-dbp-of-union-equal
      (equal (comp-dbp (union-equal acl2::x acl2::y))
             (and (comp-dbp (list-fix acl2::x))
                  (comp-dbp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-intersection-equal-2

    (defthm comp-dbp-of-intersection-equal-2
      (implies (comp-dbp (double-rewrite acl2::y))
               (comp-dbp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-intersection-equal-1

    (defthm comp-dbp-of-intersection-equal-1
      (implies (comp-dbp (double-rewrite acl2::x))
               (comp-dbp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-set-difference-equal

    (defthm comp-dbp-of-set-difference-equal
      (implies (comp-dbp acl2::x)
               (comp-dbp (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-when-subsetp-equal

    (defthm comp-dbp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (comp-dbp acl2::y))
                    (equal (comp-dbp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (comp-dbp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (comp-dbp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-rcons

    (defthm comp-dbp-of-rcons
      (iff (comp-dbp (rcons acl2::a acl2::x))
           (and (and (consp acl2::a)
                     (stringp (car acl2::a))
                     (comp-db-entryp (cdr acl2::a)))
                (comp-dbp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-append

    (defthm comp-dbp-of-append
      (equal (comp-dbp (append acl2::a acl2::b))
             (and (comp-dbp (list-fix acl2::a))
                  (comp-dbp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-rev

    (defthm comp-dbp-of-rev
      (equal (comp-dbp (rev acl2::x))
             (comp-dbp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-duplicated-members

    (defthm comp-dbp-of-duplicated-members
      (implies (comp-dbp acl2::x)
               (comp-dbp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-difference

    (defthm comp-dbp-of-difference
      (implies (comp-dbp acl2::x)
               (comp-dbp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-intersect-2

    (defthm comp-dbp-of-intersect-2
      (implies (comp-dbp acl2::y)
               (comp-dbp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-intersect-1

    (defthm comp-dbp-of-intersect-1
      (implies (comp-dbp acl2::x)
               (comp-dbp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-union

    (defthm comp-dbp-of-union
      (iff (comp-dbp (union acl2::x acl2::y))
           (and (comp-dbp (sfix acl2::x))
                (comp-dbp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-mergesort

    (defthm comp-dbp-of-mergesort
      (iff (comp-dbp (mergesort acl2::x))
           (comp-dbp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-delete

    (defthm comp-dbp-of-delete
      (implies (comp-dbp acl2::x)
               (comp-dbp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-insert

    (defthm comp-dbp-of-insert
      (iff (comp-dbp (insert acl2::a acl2::x))
           (and (comp-dbp (sfix acl2::x))
                (and (consp acl2::a)
                     (stringp (car acl2::a))
                     (comp-db-entryp (cdr acl2::a)))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-sfix

    (defthm comp-dbp-of-sfix
      (iff (comp-dbp (sfix acl2::x))
           (or (comp-dbp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-list-fix

    (defthm comp-dbp-of-list-fix
      (implies (comp-dbp acl2::x)
               (comp-dbp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-comp-dbp-compound-recognizer

    (defthm true-listp-when-comp-dbp-compound-recognizer
      (implies (comp-dbp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: comp-dbp-when-not-consp

    (defthm comp-dbp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (comp-dbp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-cdr-when-comp-dbp

    (defthm comp-dbp-of-cdr-when-comp-dbp
      (implies (comp-dbp (double-rewrite acl2::x))
               (comp-dbp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-cons

    (defthm comp-dbp-of-cons
      (equal (comp-dbp (cons acl2::a acl2::x))
             (and (and (consp acl2::a)
                       (stringp (car acl2::a))
                       (comp-db-entryp (cdr acl2::a)))
                  (comp-dbp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-make-fal

    (defthm comp-dbp-of-make-fal
      (implies (and (comp-dbp acl2::x)
                    (comp-dbp acl2::y))
               (comp-dbp (make-fal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-db-entryp-of-cdr-when-member-equal-of-comp-dbp

    (defthm comp-db-entryp-of-cdr-when-member-equal-of-comp-dbp
      (and (implies (and (comp-dbp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (comp-db-entryp (cdr acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (comp-dbp acl2::x))
                    (comp-db-entryp (cdr acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-car-when-member-equal-of-comp-dbp

    (defthm stringp-of-car-when-member-equal-of-comp-dbp
      (and (implies (and (comp-dbp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (stringp (car acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (comp-dbp acl2::x))
                    (stringp (car acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: consp-when-member-equal-of-comp-dbp

    (defthm consp-when-member-equal-of-comp-dbp
      (implies (and (comp-dbp acl2::x)
                    (member-equal acl2::a acl2::x))
               (consp acl2::a))
      :rule-classes
      ((:rewrite :backchain-limit-lst (0 0))
       (:rewrite :backchain-limit-lst (0 0)
                 :corollary (implies (if (member-equal acl2::a acl2::x)
                                         (comp-dbp acl2::x)
                                       'nil)
                                     (consp acl2::a)))))

    Theorem: comp-dbp-of-remove-assoc

    (defthm comp-dbp-of-remove-assoc
      (implies (comp-dbp acl2::x)
               (comp-dbp (remove-assoc-equal acl2::name acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-put-assoc

    (defthm comp-dbp-of-put-assoc
     (implies
          (and (comp-dbp acl2::x))
          (iff (comp-dbp (put-assoc-equal acl2::name acl2::val acl2::x))
               (and (stringp acl2::name)
                    (comp-db-entryp acl2::val))))
     :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-fast-alist-clean

    (defthm comp-dbp-of-fast-alist-clean
      (implies (comp-dbp acl2::x)
               (comp-dbp (fast-alist-clean acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-hons-shrink-alist

    (defthm comp-dbp-of-hons-shrink-alist
      (implies (and (comp-dbp acl2::x)
                    (comp-dbp acl2::y))
               (comp-dbp (hons-shrink-alist acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-hons-acons

    (defthm comp-dbp-of-hons-acons
      (equal (comp-dbp (hons-acons acl2::a acl2::n acl2::x))
             (and (stringp acl2::a)
                  (comp-db-entryp acl2::n)
                  (comp-dbp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-db-entryp-of-cdr-of-hons-assoc-equal-when-comp-dbp

    (defthm comp-db-entryp-of-cdr-of-hons-assoc-equal-when-comp-dbp
     (implies
          (comp-dbp acl2::x)
          (iff (comp-db-entryp (cdr (hons-assoc-equal acl2::k acl2::x)))
               (or (hons-assoc-equal acl2::k acl2::x)
                   (comp-db-entryp nil))))
     :rule-classes ((:rewrite)))

    Theorem: alistp-when-comp-dbp-rewrite

    (defthm alistp-when-comp-dbp-rewrite
      (implies (comp-dbp acl2::x)
               (alistp acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: alistp-when-comp-dbp

    (defthm alistp-when-comp-dbp
      (implies (comp-dbp acl2::x)
               (alistp acl2::x))
      :rule-classes :tau-system)

    Theorem: comp-db-entryp-of-cdar-when-comp-dbp

    (defthm comp-db-entryp-of-cdar-when-comp-dbp
      (implies (comp-dbp acl2::x)
               (iff (comp-db-entryp (cdar acl2::x))
                    (or (consp acl2::x)
                        (comp-db-entryp nil))))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-caar-when-comp-dbp

    (defthm stringp-of-caar-when-comp-dbp
      (implies (comp-dbp acl2::x)
               (iff (stringp (caar acl2::x))
                    (or (consp acl2::x) (stringp nil))))
      :rule-classes ((:rewrite)))