• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • C
        • Syntax-for-tools
        • Atc
        • Transformation-tools
          • Simpadd0
          • Proof-generation
            • Xeq-fundef
            • Xeq-expr-cond
            • Xeq-expr-binary
            • Xeq-block-item-list-cons
            • Xeq-stmt-ifelse
            • Xeq-expr-const
            • Xeq-declon-declon
            • Gen-param-thms
            • Gen-from-params
            • Gout
            • Gen-block-item-list-thm
            • Xeq-stmt-while
            • Xeq-stmt-dowhile
            • Gin
              • Ginp
              • Gin-fix
              • Make-gin
              • Gin-equiv
              • Change-gin
              • Gin->vartys
              • Gin->events
              • Gin->const-new
              • Gin->thm-index
                • Gin->ienv
              • Xeq-expr-ident
              • Gen-block-item-thm
              • Xeq-stmt-if
              • Xeq-expr-cast
              • Gen-initer-single-thm
              • Gen-init-scope-thm
              • Gen-expr-thm
              • Gen-declon-thm
              • Xeq-expr-unary
              • Gen-stmt-thm
              • Xeq-stmt-return
              • Xeq-stmt-expr
              • Xeq-block-item-declon
              • Xeq-block-item-stmt
              • Xeq-stmt-compound
              • Xeq-initer-single
              • Gen-thm-name
              • Gin-update
              • Gen-var-assertions
              • Tyspecseq-to-type
              • Xeq-block-item-list-empty
              • Gout-no-thm
              • Irr-gout
            • Split-gso
            • Wrap-fn
            • Constant-propagation
            • Specialize
            • Split-fn
            • Split-fn-when
            • Split-all-gso
            • Copy-fn
            • Variables-in-computation-states
            • Rename
            • Utilities
            • Proof-generation-theorems
            • Input-processing
          • Language
          • Representation
          • Insertion-sort
          • Pack
        • Proof-checker-array
        • Soft
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Ethereum
        • Leftist-trees
        • Java
        • Riscv
        • Taspi
        • Bitcoin
        • Zcash
        • Des
        • X86isa
        • Sha-2
        • Yul
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Axe
        • Poseidon
        • Where-do-i-place-my-book
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Gin

    Gin->thm-index

    Get the thm-index field from a gin.

    Signature
    (gin->thm-index x) → thm-index
    Arguments
    x — Guard (ginp x).
    Returns
    thm-index — Type (posp thm-index).

    This is an ordinary field accessor created by fty::defprod.

    Definitions and Theorems

    Function: gin->thm-index$inline

    (defun gin->thm-index$inline (x)
      (declare (xargs :guard (ginp x)))
      (declare (xargs :guard t))
      (let ((__function__ 'gin->thm-index))
        (declare (ignorable __function__))
        (mbe :logic
             (b* ((x (and t x)))
               (pos-fix (cdr (std::da-nth 4 x))))
             :exec (cdr (std::da-nth 4 x)))))

    Theorem: posp-of-gin->thm-index

    (defthm posp-of-gin->thm-index
      (b* ((thm-index (gin->thm-index$inline x)))
        (posp thm-index))
      :rule-classes :rewrite)

    Theorem: gin->thm-index$inline-of-gin-fix-x

    (defthm gin->thm-index$inline-of-gin-fix-x
      (equal (gin->thm-index$inline (gin-fix x))
             (gin->thm-index$inline x)))

    Theorem: gin->thm-index$inline-gin-equiv-congruence-on-x

    (defthm gin->thm-index$inline-gin-equiv-congruence-on-x
      (implies (gin-equiv x x-equiv)
               (equal (gin->thm-index$inline x)
                      (gin->thm-index$inline x-equiv)))
      :rule-classes :congruence)