• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
        • Deftreeops
        • Defdefparse
        • Defgrammar
        • Tree-utilities
        • Notation
        • Grammar-parser
        • Meta-circular-validation
        • Parsing-primitives-defresult
        • Parsing-primitives-seq
        • Operations
        • Examples
          • Pdf-example
            • Pdf-cst-dict-value-conc?
            • Pdf-cst-dict-entry-conc?
            • Pdf-cst-list-list-conc-matchp$
            • Pdf-cst-list-list-alt-matchp$
            • Pdf-cst-list-rep-matchp$
            • Pdf-cst-list-elem-matchp$
            • Pdf-cst-startxref-marker-conc-rep-elem
            • Pdf-cst-reference-array-entry-conc
            • Pdf-cst-matchp$
            • Pdf-cst-endstream-marker-conc-rep-elem
            • Pdf-cst-dict-value-conc9-rep-elem
            • Pdf-cst-dict-value-conc8-rep-elem
            • Pdf-cst-dict-value-conc7-rep-elem
            • Pdf-cst-dict-value-conc6-rep-elem
            • Pdf-cst-dict-value-conc5-rep-elem
            • Pdf-cst-dict-value-conc4-rep-elem
            • Pdf-cst-dict-value-conc3-rep-elem
            • Pdf-cst-dict-value-conc2-rep-elem
            • Pdf-cst-dict-value-conc1-rep-elem
            • Pdf-cst-dict-entry-conc8-rep-elem
            • Pdf-cst-dict-entry-conc7-rep-elem
            • Pdf-cst-dict-entry-conc6-rep-elem
            • Pdf-cst-dict-entry-conc5-rep-elem
            • Pdf-cst-dict-entry-conc4-rep-elem
            • Pdf-cst-dict-entry-conc3-rep-elem
            • Pdf-cst-dict-entry-conc2-rep-elem
            • Pdf-cst-dict-entry-conc1-rep-elem
            • Pdf-cst-xref-marker-conc-rep-elem
            • Pdf-cst-trailer-marker-conc-rep-elem
            • Pdf-cst-trailer-marker-conc-rep
            • Pdf-cst-trailer-dictionary-conc
            • Pdf-cst-stream-marker-conc-rep-elem
            • Pdf-cst-startxref-marker-conc-rep
            • Pdf-cst-startxref-marker-conc
            • Pdf-cst-right-bracket-conc-rep-elem
            • Pdf-cst-reference-array-conc
            • Pdf-cst-left-bracket-conc-rep-elem
            • Pdf-cst-endstream-marker-conc-rep
            • Pdf-cst-endstream-marker-conc
            • Pdf-cst-endobj-marker-conc-rep-elem
            • Pdf-cst-dict-value-conc9-rep
            • Pdf-cst-dict-value-conc9
            • Pdf-cst-dict-value-conc8-rep
            • Pdf-cst-dict-value-conc8
            • Pdf-cst-dict-value-conc7-rep
            • Pdf-cst-dict-value-conc7
            • Pdf-cst-dict-value-conc6-rep
            • Pdf-cst-dict-value-conc6
            • Pdf-cst-dict-value-conc5-rep
            • Pdf-cst-dict-value-conc5
            • Pdf-cst-dict-value-conc4-rep
            • Pdf-cst-dict-value-conc4
            • Pdf-cst-dict-value-conc3-rep
            • Pdf-cst-dict-value-conc3
            • Pdf-cst-dict-value-conc2-rep
            • Pdf-cst-dict-value-conc2
            • Pdf-cst-dict-value-conc1-rep
            • Pdf-cst-dict-value-conc1
            • Pdf-cst-dict-entry-conc8-rep
            • Pdf-cst-dict-entry-conc8
            • Pdf-cst-dict-entry-conc7-rep
            • Pdf-cst-dict-entry-conc7
            • Pdf-cst-dict-entry-conc6-rep
            • Pdf-cst-dict-entry-conc6
            • Pdf-cst-dict-entry-conc5-rep
            • Pdf-cst-dict-entry-conc5
            • Pdf-cst-dict-entry-conc4-rep
            • Pdf-cst-dict-entry-conc4
            • Pdf-cst-dict-entry-conc3-rep
            • Pdf-cst-dict-entry-conc3
            • Pdf-cst-dict-entry-conc2-rep
            • Pdf-cst-dict-entry-conc2
            • Pdf-cst-dict-entry-conc1-rep
            • Pdf-cst-dict-entry-conc1
            • *pdf-grammar-rules*
              • *pdf-grammar-rules*-tree-operations
              • Pdf-cst-xref-marker-conc-rep
              • Pdf-cst-xref-entry-conc
              • Pdf-cst-trailer-marker-conc
              • Pdf-cst-stream-marker-conc-rep
              • Pdf-cst-stream-marker-conc
              • Pdf-cst-start-dict-conc-rep-elem
              • Pdf-cst-start-dict-conc-rep
              • Pdf-cst-right-bracket-conc-rep
              • Pdf-cst-right-bracket-conc
              • Pdf-cst-pdf-marker-conc-rep-elem
              • Pdf-cst-pdf-marker-conc-rep
              • Pdf-cst-obj-marker-conc-rep-elem
              • Pdf-cst-obj-marker-conc-rep
              • Pdf-cst-name-char-conc-rep-elem
              • Pdf-cst-name-char-conc-rep
              • Pdf-cst-left-bracket-conc-rep
              • Pdf-cst-left-bracket-conc
              • Pdf-cst-eof-marker-conc-rep-elem
              • Pdf-cst-eof-marker-conc-rep
              • Pdf-cst-endobj-marker-conc-rep
              • Pdf-cst-endobj-marker-conc
              • Pdf-cst-end-dict-conc-rep-elem
              • Pdf-cst-digit1-9-conc-rep-elem
              • Pdf-cst-dictionary-conc
              • Pdf-cst-default-entry-conc
              • Pdf-cst-backslash-conc-rep-elem
              • Pdf-cst-backslash-conc-rep
              • Pdf-cst-zero-conc-rep-elem
              • Pdf-cst-zero-conc-rep
              • Pdf-cst-xref-marker-conc
              • Pdf-cst-xref-int-conc
              • Pdf-cst-type-entry-conc
              • Pdf-cst-trailer-conc
              • Pdf-cst-stream-conc
              • Pdf-cst-start-dict-conc
              • Pdf-cst-slash-conc-rep-elem
              • Pdf-cst-slash-conc-rep
              • Pdf-cst-reference-conc
              • Pdf-cst-rectangle-conc
              • Pdf-cst-plus-conc-rep-elem
              • Pdf-cst-plus-conc-rep
              • Pdf-cst-period-conc-rep-elem
              • Pdf-cst-period-conc-rep
              • Pdf-cst-pdf-marker-conc
              • Pdf-cst-objects-conc
              • Pdf-cst-object-conc
              • Pdf-cst-obj-marker-conc
              • Pdf-cst-null-conc-rep-elem
              • Pdf-cst-null-conc-rep
              • Pdf-cst-name-char-conc
              • Pdf-cst-minus-conc-rep-elem
              • Pdf-cst-minus-conc-rep
              • Pdf-cst-header-conc
              • Pdf-cst-font-entry-conc
              • Pdf-cst-eof-marker-conc
              • Pdf-cst-end-dict-conc-rep
              • Pdf-cst-end-dict-conc
              • Pdf-cst-digit1-9-conc-rep
              • Pdf-cst-digit1-9-conc
              • Pdf-cst-digit-conc-rep-elem
              • Pdf-cst-digit-conc-rep
              • Pdf-cst-dict-key-conc
              • Pdf-cst-backslash-conc
              • Pdf-cst-array-conc
              • Pdf-cst-zero-conc
              • Pdf-cst-xref-conc
              • Pdf-cst-ws-conc
              • Pdf-cst-string-conc
              • Pdf-cst-slash-conc
              • Pdf-cst-real-conc
              • Pdf-cst-plus-conc
              • Pdf-cst-period-conc
              • Pdf-cst-pdf-conc
              • Pdf-cst-null-conc
              • Pdf-cst-name-conc
              • Pdf-cst-minus-conc
              • Pdf-cst-font-conc
              • Pdf-cst-digit-conc
              • Pdf-cst-%x5d-10ffff-nat
              • Pdf-cst-%x31-39-nat
              • Pdf-cst-%x30-39-nat
              • Pdf-cst-%x23-5b-nat
              • Pdf-cst-%x20-7e-nat
              • Pdf-cst-%x20-21-nat
            • Smtp-example
            • Imap-example
            • Http-example
            • Uri-example
            • Imf-example
          • Differences-with-paper
          • Constructor-utilities
          • Grammar-printer
          • Parsing-tools
        • Vwsim
        • Isar
        • Wp-gen
        • Dimacs-reader
        • Pfcs
        • Legacy-defrstobj
        • C
        • Proof-checker-array
        • Soft
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Ethereum
        • Leftist-trees
        • Java
        • Riscv
        • Taspi
        • Bitcoin
        • Zcash
        • Des
        • X86isa
        • Sha-2
        • Yul
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Axe
        • Poseidon
        • Where-do-i-place-my-book
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • *pdf-grammar-rules*

    *pdf-grammar-rules*-tree-operations

    Tree operations specialized to *pdf-grammar-rules*.

    Definitions and Theorems

    Function: pdf-cst-matchp$

    (defun pdf-cst-matchp$ (tree elem)
      (declare (xargs :guard (and (treep tree) (elementp elem))))
      (let ((__function__ 'pdf-cst-matchp$))
        (declare (ignorable __function__))
        (and (tree-terminatedp tree)
             (tree-match-element-p tree elem *pdf-grammar-rules*))))

    Theorem: booleanp-of-pdf-cst-matchp$

    (defthm booleanp-of-pdf-cst-matchp$
      (b* ((yes/no (pdf-cst-matchp$ tree elem)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: pdf-cst-matchp$-of-tree-fix-tree

    (defthm pdf-cst-matchp$-of-tree-fix-tree
      (equal (pdf-cst-matchp$ (tree-fix tree) elem)
             (pdf-cst-matchp$ tree elem)))

    Theorem: pdf-cst-matchp$-tree-equiv-congruence-on-tree

    (defthm pdf-cst-matchp$-tree-equiv-congruence-on-tree
      (implies (tree-equiv tree tree-equiv)
               (equal (pdf-cst-matchp$ tree elem)
                      (pdf-cst-matchp$ tree-equiv elem)))
      :rule-classes :congruence)

    Theorem: pdf-cst-matchp$-of-element-fix-elem

    (defthm pdf-cst-matchp$-of-element-fix-elem
      (equal (pdf-cst-matchp$ tree (element-fix elem))
             (pdf-cst-matchp$ tree elem)))

    Theorem: pdf-cst-matchp$-element-equiv-congruence-on-elem

    (defthm pdf-cst-matchp$-element-equiv-congruence-on-elem
      (implies (element-equiv elem elem-equiv)
               (equal (pdf-cst-matchp$ tree elem)
                      (pdf-cst-matchp$ tree elem-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-list-elem-matchp$

    (defun pdf-cst-list-elem-matchp$ (trees elem)
     (declare (xargs :guard (and (tree-listp trees)
                                 (elementp elem))))
     (let ((__function__ 'pdf-cst-list-elem-matchp$))
      (declare (ignorable __function__))
      (and (tree-list-terminatedp trees)
           (tree-list-match-element-p trees elem *pdf-grammar-rules*))))

    Theorem: booleanp-of-pdf-cst-list-elem-matchp$

    (defthm booleanp-of-pdf-cst-list-elem-matchp$
      (b* ((yes/no (pdf-cst-list-elem-matchp$ trees elem)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: pdf-cst-list-elem-matchp$-of-tree-list-fix-trees

    (defthm pdf-cst-list-elem-matchp$-of-tree-list-fix-trees
      (equal (pdf-cst-list-elem-matchp$ (tree-list-fix trees)
                                        elem)
             (pdf-cst-list-elem-matchp$ trees elem)))

    Theorem: pdf-cst-list-elem-matchp$-tree-list-equiv-congruence-on-trees

    (defthm
          pdf-cst-list-elem-matchp$-tree-list-equiv-congruence-on-trees
      (implies (tree-list-equiv trees trees-equiv)
               (equal (pdf-cst-list-elem-matchp$ trees elem)
                      (pdf-cst-list-elem-matchp$ trees-equiv elem)))
      :rule-classes :congruence)

    Theorem: pdf-cst-list-elem-matchp$-of-element-fix-elem

    (defthm pdf-cst-list-elem-matchp$-of-element-fix-elem
      (equal (pdf-cst-list-elem-matchp$ trees (element-fix elem))
             (pdf-cst-list-elem-matchp$ trees elem)))

    Theorem: pdf-cst-list-elem-matchp$-element-equiv-congruence-on-elem

    (defthm pdf-cst-list-elem-matchp$-element-equiv-congruence-on-elem
      (implies (element-equiv elem elem-equiv)
               (equal (pdf-cst-list-elem-matchp$ trees elem)
                      (pdf-cst-list-elem-matchp$ trees elem-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-list-rep-matchp$

    (defun pdf-cst-list-rep-matchp$ (trees rep)
     (declare (xargs :guard (and (tree-listp trees)
                                 (repetitionp rep))))
     (let ((__function__ 'pdf-cst-list-rep-matchp$))
      (declare (ignorable __function__))
      (and
         (tree-list-terminatedp trees)
         (tree-list-match-repetition-p trees rep *pdf-grammar-rules*))))

    Theorem: booleanp-of-pdf-cst-list-rep-matchp$

    (defthm booleanp-of-pdf-cst-list-rep-matchp$
      (b* ((yes/no (pdf-cst-list-rep-matchp$ trees rep)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: pdf-cst-list-rep-matchp$-of-tree-list-fix-trees

    (defthm pdf-cst-list-rep-matchp$-of-tree-list-fix-trees
      (equal (pdf-cst-list-rep-matchp$ (tree-list-fix trees)
                                       rep)
             (pdf-cst-list-rep-matchp$ trees rep)))

    Theorem: pdf-cst-list-rep-matchp$-tree-list-equiv-congruence-on-trees

    (defthm pdf-cst-list-rep-matchp$-tree-list-equiv-congruence-on-trees
      (implies (tree-list-equiv trees trees-equiv)
               (equal (pdf-cst-list-rep-matchp$ trees rep)
                      (pdf-cst-list-rep-matchp$ trees-equiv rep)))
      :rule-classes :congruence)

    Theorem: pdf-cst-list-rep-matchp$-of-repetition-fix-rep

    (defthm pdf-cst-list-rep-matchp$-of-repetition-fix-rep
      (equal (pdf-cst-list-rep-matchp$ trees (repetition-fix rep))
             (pdf-cst-list-rep-matchp$ trees rep)))

    Theorem: pdf-cst-list-rep-matchp$-repetition-equiv-congruence-on-rep

    (defthm pdf-cst-list-rep-matchp$-repetition-equiv-congruence-on-rep
      (implies (repetition-equiv rep rep-equiv)
               (equal (pdf-cst-list-rep-matchp$ trees rep)
                      (pdf-cst-list-rep-matchp$ trees rep-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-list-list-conc-matchp$

    (defun pdf-cst-list-list-conc-matchp$ (treess conc)
      (declare (xargs :guard (and (tree-list-listp treess)
                                  (concatenationp conc))))
      (let ((__function__ 'pdf-cst-list-list-conc-matchp$))
        (declare (ignorable __function__))
        (and (tree-list-list-terminatedp treess)
             (tree-list-list-match-concatenation-p
                  treess conc *pdf-grammar-rules*))))

    Theorem: booleanp-of-pdf-cst-list-list-conc-matchp$

    (defthm booleanp-of-pdf-cst-list-list-conc-matchp$
      (b* ((yes/no (pdf-cst-list-list-conc-matchp$ treess conc)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: pdf-cst-list-list-conc-matchp$-of-tree-list-list-fix-treess

    (defthm pdf-cst-list-list-conc-matchp$-of-tree-list-list-fix-treess
      (equal (pdf-cst-list-list-conc-matchp$ (tree-list-list-fix treess)
                                             conc)
             (pdf-cst-list-list-conc-matchp$ treess conc)))

    Theorem: pdf-cst-list-list-conc-matchp$-tree-list-list-equiv-congruence-on-treess

    (defthm
     pdf-cst-list-list-conc-matchp$-tree-list-list-equiv-congruence-on-treess
     (implies
          (tree-list-list-equiv treess treess-equiv)
          (equal (pdf-cst-list-list-conc-matchp$ treess conc)
                 (pdf-cst-list-list-conc-matchp$ treess-equiv conc)))
     :rule-classes :congruence)

    Theorem: pdf-cst-list-list-conc-matchp$-of-concatenation-fix-conc

    (defthm pdf-cst-list-list-conc-matchp$-of-concatenation-fix-conc
     (equal
        (pdf-cst-list-list-conc-matchp$ treess (concatenation-fix conc))
        (pdf-cst-list-list-conc-matchp$ treess conc)))

    Theorem: pdf-cst-list-list-conc-matchp$-concatenation-equiv-congruence-on-conc

    (defthm
     pdf-cst-list-list-conc-matchp$-concatenation-equiv-congruence-on-conc
     (implies
          (concatenation-equiv conc conc-equiv)
          (equal (pdf-cst-list-list-conc-matchp$ treess conc)
                 (pdf-cst-list-list-conc-matchp$ treess conc-equiv)))
     :rule-classes :congruence)

    Function: pdf-cst-list-list-alt-matchp$

    (defun pdf-cst-list-list-alt-matchp$ (treess alt)
      (declare (xargs :guard (and (tree-list-listp treess)
                                  (alternationp alt))))
      (let ((__function__ 'pdf-cst-list-list-alt-matchp$))
        (declare (ignorable __function__))
        (and (tree-list-list-terminatedp treess)
             (tree-list-list-match-alternation-p
                  treess alt *pdf-grammar-rules*))))

    Theorem: booleanp-of-pdf-cst-list-list-alt-matchp$

    (defthm booleanp-of-pdf-cst-list-list-alt-matchp$
      (b* ((yes/no (pdf-cst-list-list-alt-matchp$ treess alt)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: pdf-cst-list-list-alt-matchp$-of-tree-list-list-fix-treess

    (defthm pdf-cst-list-list-alt-matchp$-of-tree-list-list-fix-treess
      (equal (pdf-cst-list-list-alt-matchp$ (tree-list-list-fix treess)
                                            alt)
             (pdf-cst-list-list-alt-matchp$ treess alt)))

    Theorem: pdf-cst-list-list-alt-matchp$-tree-list-list-equiv-congruence-on-treess

    (defthm
     pdf-cst-list-list-alt-matchp$-tree-list-list-equiv-congruence-on-treess
     (implies (tree-list-list-equiv treess treess-equiv)
              (equal (pdf-cst-list-list-alt-matchp$ treess alt)
                     (pdf-cst-list-list-alt-matchp$ treess-equiv alt)))
     :rule-classes :congruence)

    Theorem: pdf-cst-list-list-alt-matchp$-of-alternation-fix-alt

    (defthm pdf-cst-list-list-alt-matchp$-of-alternation-fix-alt
     (equal (pdf-cst-list-list-alt-matchp$ treess (alternation-fix alt))
            (pdf-cst-list-list-alt-matchp$ treess alt)))

    Theorem: pdf-cst-list-list-alt-matchp$-alternation-equiv-congruence-on-alt

    (defthm
      pdf-cst-list-list-alt-matchp$-alternation-equiv-congruence-on-alt
      (implies (alternation-equiv alt alt-equiv)
               (equal (pdf-cst-list-list-alt-matchp$ treess alt)
                      (pdf-cst-list-list-alt-matchp$ treess alt-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-%x20-21-nat

    (defun pdf-cst-%x20-21-nat (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "%x20-21")))
      (let ((__function__ 'pdf-cst-%x20-21-nat))
        (declare (ignorable __function__))
        (lnfix (nth 0 (tree-leafterm->get cst)))))

    Theorem: natp-of-pdf-cst-%x20-21-nat

    (defthm natp-of-pdf-cst-%x20-21-nat
      (b* ((nat (pdf-cst-%x20-21-nat cst)))
        (natp nat))
      :rule-classes :rewrite)

    Theorem: pdf-cst-%x20-21-nat-of-tree-fix-cst

    (defthm pdf-cst-%x20-21-nat-of-tree-fix-cst
      (equal (pdf-cst-%x20-21-nat (tree-fix cst))
             (pdf-cst-%x20-21-nat cst)))

    Theorem: pdf-cst-%x20-21-nat-tree-equiv-congruence-on-cst

    (defthm pdf-cst-%x20-21-nat-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-%x20-21-nat cst)
                      (pdf-cst-%x20-21-nat cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-%x20-7e-nat

    (defun pdf-cst-%x20-7e-nat (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "%x20-7E")))
      (let ((__function__ 'pdf-cst-%x20-7e-nat))
        (declare (ignorable __function__))
        (lnfix (nth 0 (tree-leafterm->get cst)))))

    Theorem: natp-of-pdf-cst-%x20-7e-nat

    (defthm natp-of-pdf-cst-%x20-7e-nat
      (b* ((nat (pdf-cst-%x20-7e-nat cst)))
        (natp nat))
      :rule-classes :rewrite)

    Theorem: pdf-cst-%x20-7e-nat-of-tree-fix-cst

    (defthm pdf-cst-%x20-7e-nat-of-tree-fix-cst
      (equal (pdf-cst-%x20-7e-nat (tree-fix cst))
             (pdf-cst-%x20-7e-nat cst)))

    Theorem: pdf-cst-%x20-7e-nat-tree-equiv-congruence-on-cst

    (defthm pdf-cst-%x20-7e-nat-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-%x20-7e-nat cst)
                      (pdf-cst-%x20-7e-nat cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-%x23-5b-nat

    (defun pdf-cst-%x23-5b-nat (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "%x23-5B")))
      (let ((__function__ 'pdf-cst-%x23-5b-nat))
        (declare (ignorable __function__))
        (lnfix (nth 0 (tree-leafterm->get cst)))))

    Theorem: natp-of-pdf-cst-%x23-5b-nat

    (defthm natp-of-pdf-cst-%x23-5b-nat
      (b* ((nat (pdf-cst-%x23-5b-nat cst)))
        (natp nat))
      :rule-classes :rewrite)

    Theorem: pdf-cst-%x23-5b-nat-of-tree-fix-cst

    (defthm pdf-cst-%x23-5b-nat-of-tree-fix-cst
      (equal (pdf-cst-%x23-5b-nat (tree-fix cst))
             (pdf-cst-%x23-5b-nat cst)))

    Theorem: pdf-cst-%x23-5b-nat-tree-equiv-congruence-on-cst

    (defthm pdf-cst-%x23-5b-nat-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-%x23-5b-nat cst)
                      (pdf-cst-%x23-5b-nat cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-%x30-39-nat

    (defun pdf-cst-%x30-39-nat (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "%x30-39")))
      (let ((__function__ 'pdf-cst-%x30-39-nat))
        (declare (ignorable __function__))
        (lnfix (nth 0 (tree-leafterm->get cst)))))

    Theorem: natp-of-pdf-cst-%x30-39-nat

    (defthm natp-of-pdf-cst-%x30-39-nat
      (b* ((nat (pdf-cst-%x30-39-nat cst)))
        (natp nat))
      :rule-classes :rewrite)

    Theorem: pdf-cst-%x30-39-nat-of-tree-fix-cst

    (defthm pdf-cst-%x30-39-nat-of-tree-fix-cst
      (equal (pdf-cst-%x30-39-nat (tree-fix cst))
             (pdf-cst-%x30-39-nat cst)))

    Theorem: pdf-cst-%x30-39-nat-tree-equiv-congruence-on-cst

    (defthm pdf-cst-%x30-39-nat-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-%x30-39-nat cst)
                      (pdf-cst-%x30-39-nat cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-%x31-39-nat

    (defun pdf-cst-%x31-39-nat (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "%x31-39")))
      (let ((__function__ 'pdf-cst-%x31-39-nat))
        (declare (ignorable __function__))
        (lnfix (nth 0 (tree-leafterm->get cst)))))

    Theorem: natp-of-pdf-cst-%x31-39-nat

    (defthm natp-of-pdf-cst-%x31-39-nat
      (b* ((nat (pdf-cst-%x31-39-nat cst)))
        (natp nat))
      :rule-classes :rewrite)

    Theorem: pdf-cst-%x31-39-nat-of-tree-fix-cst

    (defthm pdf-cst-%x31-39-nat-of-tree-fix-cst
      (equal (pdf-cst-%x31-39-nat (tree-fix cst))
             (pdf-cst-%x31-39-nat cst)))

    Theorem: pdf-cst-%x31-39-nat-tree-equiv-congruence-on-cst

    (defthm pdf-cst-%x31-39-nat-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-%x31-39-nat cst)
                      (pdf-cst-%x31-39-nat cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-%x5d-10ffff-nat

    (defun pdf-cst-%x5d-10ffff-nat (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "%x5D-10FFFF")))
      (let ((__function__ 'pdf-cst-%x5d-10ffff-nat))
        (declare (ignorable __function__))
        (lnfix (nth 0 (tree-leafterm->get cst)))))

    Theorem: natp-of-pdf-cst-%x5d-10ffff-nat

    (defthm natp-of-pdf-cst-%x5d-10ffff-nat
      (b* ((nat (pdf-cst-%x5d-10ffff-nat cst)))
        (natp nat))
      :rule-classes :rewrite)

    Theorem: pdf-cst-%x5d-10ffff-nat-of-tree-fix-cst

    (defthm pdf-cst-%x5d-10ffff-nat-of-tree-fix-cst
      (equal (pdf-cst-%x5d-10ffff-nat (tree-fix cst))
             (pdf-cst-%x5d-10ffff-nat cst)))

    Theorem: pdf-cst-%x5d-10ffff-nat-tree-equiv-congruence-on-cst

    (defthm pdf-cst-%x5d-10ffff-nat-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-%x5d-10ffff-nat cst)
                      (pdf-cst-%x5d-10ffff-nat cst-equiv)))
      :rule-classes :congruence)

    Theorem: pdf-cst-%x20-21-nat-bounds

    (defthm pdf-cst-%x20-21-nat-bounds
      (implies (pdf-cst-matchp cst "%x20-21")
               (and (<= 32 (pdf-cst-%x20-21-nat cst))
                    (<= (pdf-cst-%x20-21-nat cst) 33)))
      :rule-classes :linear)

    Theorem: pdf-cst-%x20-7e-nat-bounds

    (defthm pdf-cst-%x20-7e-nat-bounds
      (implies (pdf-cst-matchp cst "%x20-7E")
               (and (<= 32 (pdf-cst-%x20-7e-nat cst))
                    (<= (pdf-cst-%x20-7e-nat cst) 126)))
      :rule-classes :linear)

    Theorem: pdf-cst-%x23-5b-nat-bounds

    (defthm pdf-cst-%x23-5b-nat-bounds
      (implies (pdf-cst-matchp cst "%x23-5B")
               (and (<= 35 (pdf-cst-%x23-5b-nat cst))
                    (<= (pdf-cst-%x23-5b-nat cst) 91)))
      :rule-classes :linear)

    Theorem: pdf-cst-%x30-39-nat-bounds

    (defthm pdf-cst-%x30-39-nat-bounds
      (implies (pdf-cst-matchp cst "%x30-39")
               (and (<= 48 (pdf-cst-%x30-39-nat cst))
                    (<= (pdf-cst-%x30-39-nat cst) 57)))
      :rule-classes :linear)

    Theorem: pdf-cst-%x31-39-nat-bounds

    (defthm pdf-cst-%x31-39-nat-bounds
      (implies (pdf-cst-matchp cst "%x31-39")
               (and (<= 49 (pdf-cst-%x31-39-nat cst))
                    (<= (pdf-cst-%x31-39-nat cst) 57)))
      :rule-classes :linear)

    Theorem: pdf-cst-%x5d-10ffff-nat-bounds

    (defthm pdf-cst-%x5d-10ffff-nat-bounds
      (implies (pdf-cst-matchp cst "%x5D-10FFFF")
               (and (<= 93 (pdf-cst-%x5d-10ffff-nat cst))
                    (<= (pdf-cst-%x5d-10ffff-nat cst)
                        1114111)))
      :rule-classes :linear)

    Theorem: pdf-cst-%s"/basefont"-leafterm

    (defthm |PDF-CST-%s"/BaseFont"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/BaseFont\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/contents"-leafterm

    (defthm |PDF-CST-%s"/Contents"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Contents\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/count"-leafterm

    (defthm |PDF-CST-%s"/Count"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Count\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/encoding"-leafterm

    (defthm |PDF-CST-%s"/Encoding"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Encoding\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/font"-leafterm

    (defthm |PDF-CST-%s"/Font"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Font\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/id"-leafterm

    (defthm |PDF-CST-%s"/ID"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/ID\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/info"-leafterm

    (defthm |PDF-CST-%s"/Info"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Info\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/kids"-leafterm

    (defthm |PDF-CST-%s"/Kids"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Kids\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/length"-leafterm

    (defthm |PDF-CST-%s"/Length"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Length\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/mediabox"-leafterm

    (defthm |PDF-CST-%s"/MediaBox"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/MediaBox\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/pages"-leafterm

    (defthm |PDF-CST-%s"/Pages"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Pages\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/parent"-leafterm

    (defthm |PDF-CST-%s"/Parent"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Parent\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/resources"-leafterm

    (defthm |PDF-CST-%s"/Resources"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Resources\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/root"-leafterm

    (defthm |PDF-CST-%s"/Root"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Root\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/size"-leafterm

    (defthm |PDF-CST-%s"/Size"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Size\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/subtype"-leafterm

    (defthm |PDF-CST-%s"/Subtype"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Subtype\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"/type"-leafterm

    (defthm |PDF-CST-%s"/Type"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"/Type\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"cropbox"-leafterm

    (defthm |PDF-CST-%s"CropBox"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"CropBox\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"false"-leafterm

    (defthm |PDF-CST-%s"false"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"false\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"null"-leafterm

    (defthm |PDF-CST-%s"null"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"null\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-%s"true"-leafterm

    (defthm |PDF-CST-%s"true"-LEAFTERM|
      (implies (pdf-cst-matchp cst "%s\"true\"")
               (equal (tree-kind cst) :leafterm)))

    Theorem: pdf-cst-pdf-nonleaf

    (defthm pdf-cst-pdf-nonleaf
      (implies (pdf-cst-matchp cst "pdf")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-header-nonleaf

    (defthm pdf-cst-header-nonleaf
      (implies (pdf-cst-matchp cst "header")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-pdf-marker-nonleaf

    (defthm pdf-cst-pdf-marker-nonleaf
      (implies (pdf-cst-matchp cst "pdf-marker")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-objects-nonleaf

    (defthm pdf-cst-objects-nonleaf
      (implies (pdf-cst-matchp cst "objects")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-object-nonleaf

    (defthm pdf-cst-object-nonleaf
      (implies (pdf-cst-matchp cst "object")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-obj-marker-nonleaf

    (defthm pdf-cst-obj-marker-nonleaf
      (implies (pdf-cst-matchp cst "obj-marker")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-endobj-marker-nonleaf

    (defthm pdf-cst-endobj-marker-nonleaf
      (implies (pdf-cst-matchp cst "endobj-marker")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-stream-nonleaf

    (defthm pdf-cst-stream-nonleaf
      (implies (pdf-cst-matchp cst "stream")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-stream-marker-nonleaf

    (defthm pdf-cst-stream-marker-nonleaf
      (implies (pdf-cst-matchp cst "stream-marker")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-endstream-marker-nonleaf

    (defthm pdf-cst-endstream-marker-nonleaf
      (implies (pdf-cst-matchp cst "endstream-marker")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-xref-nonleaf

    (defthm pdf-cst-xref-nonleaf
      (implies (pdf-cst-matchp cst "xref")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-xref-entry-nonleaf

    (defthm pdf-cst-xref-entry-nonleaf
      (implies (pdf-cst-matchp cst "xref-entry")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-use-marker-nonleaf

    (defthm pdf-cst-use-marker-nonleaf
      (implies (pdf-cst-matchp cst "use-marker")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-xref-marker-nonleaf

    (defthm pdf-cst-xref-marker-nonleaf
      (implies (pdf-cst-matchp cst "xref-marker")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-xref-int-nonleaf

    (defthm pdf-cst-xref-int-nonleaf
      (implies (pdf-cst-matchp cst "xref-int")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-trailer-nonleaf

    (defthm pdf-cst-trailer-nonleaf
      (implies (pdf-cst-matchp cst "trailer")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-startxref-marker-nonleaf

    (defthm pdf-cst-startxref-marker-nonleaf
      (implies (pdf-cst-matchp cst "startxref-marker")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-eof-marker-nonleaf

    (defthm pdf-cst-eof-marker-nonleaf
      (implies (pdf-cst-matchp cst "eof-marker")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-trailer-dictionary-nonleaf

    (defthm pdf-cst-trailer-dictionary-nonleaf
      (implies (pdf-cst-matchp cst "trailer-dictionary")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-trailer-key-and-value-nonleaf

    (defthm pdf-cst-trailer-key-and-value-nonleaf
      (implies (pdf-cst-matchp cst "trailer-key-and-value")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-trailer-marker-nonleaf

    (defthm pdf-cst-trailer-marker-nonleaf
      (implies (pdf-cst-matchp cst "trailer-marker")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-dictionary-nonleaf

    (defthm pdf-cst-dictionary-nonleaf
      (implies (pdf-cst-matchp cst "dictionary")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-dict-entry-nonleaf

    (defthm pdf-cst-dict-entry-nonleaf
      (implies (pdf-cst-matchp cst "dict-entry")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-default-entry-nonleaf

    (defthm pdf-cst-default-entry-nonleaf
      (implies (pdf-cst-matchp cst "default-entry")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-type-entry-nonleaf

    (defthm pdf-cst-type-entry-nonleaf
      (implies (pdf-cst-matchp cst "type-entry")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-reference-entry-nonleaf

    (defthm pdf-cst-reference-entry-nonleaf
      (implies (pdf-cst-matchp cst "reference-entry")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-reference-array-entry-nonleaf

    (defthm pdf-cst-reference-array-entry-nonleaf
      (implies (pdf-cst-matchp cst "reference-array-entry")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-rectangle-entry-nonleaf

    (defthm pdf-cst-rectangle-entry-nonleaf
      (implies (pdf-cst-matchp cst "rectangle-entry")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-number-entry-nonleaf

    (defthm pdf-cst-number-entry-nonleaf
      (implies (pdf-cst-matchp cst "number-entry")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-name-entry-nonleaf

    (defthm pdf-cst-name-entry-nonleaf
      (implies (pdf-cst-matchp cst "name-entry")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-font-entry-nonleaf

    (defthm pdf-cst-font-entry-nonleaf
      (implies (pdf-cst-matchp cst "font-entry")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-font-nonleaf

    (defthm pdf-cst-font-nonleaf
      (implies (pdf-cst-matchp cst "font")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-dict-key-nonleaf

    (defthm pdf-cst-dict-key-nonleaf
      (implies (pdf-cst-matchp cst "dict-key")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-dict-value-nonleaf

    (defthm pdf-cst-dict-value-nonleaf
      (implies (pdf-cst-matchp cst "dict-value")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-start-dict-nonleaf

    (defthm pdf-cst-start-dict-nonleaf
      (implies (pdf-cst-matchp cst "start-dict")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-end-dict-nonleaf

    (defthm pdf-cst-end-dict-nonleaf
      (implies (pdf-cst-matchp cst "end-dict")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-ws-nonleaf

    (defthm pdf-cst-ws-nonleaf
      (implies (pdf-cst-matchp cst "ws")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-digit1-9-nonleaf

    (defthm pdf-cst-digit1-9-nonleaf
      (implies (pdf-cst-matchp cst "digit1-9")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-digit-nonleaf

    (defthm pdf-cst-digit-nonleaf
      (implies (pdf-cst-matchp cst "digit")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-boolean-nonleaf

    (defthm pdf-cst-boolean-nonleaf
      (implies (pdf-cst-matchp cst "boolean")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-array-nonleaf

    (defthm pdf-cst-array-nonleaf
      (implies (pdf-cst-matchp cst "array")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-reference-array-nonleaf

    (defthm pdf-cst-reference-array-nonleaf
      (implies (pdf-cst-matchp cst "reference-array")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-reference-nonleaf

    (defthm pdf-cst-reference-nonleaf
      (implies (pdf-cst-matchp cst "reference")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-rectangle-nonleaf

    (defthm pdf-cst-rectangle-nonleaf
      (implies (pdf-cst-matchp cst "rectangle")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-left-bracket-nonleaf

    (defthm pdf-cst-left-bracket-nonleaf
      (implies (pdf-cst-matchp cst "left-bracket")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-right-bracket-nonleaf

    (defthm pdf-cst-right-bracket-nonleaf
      (implies (pdf-cst-matchp cst "right-bracket")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-number-nonleaf

    (defthm pdf-cst-number-nonleaf
      (implies (pdf-cst-matchp cst "number")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-null-nonleaf

    (defthm pdf-cst-null-nonleaf
      (implies (pdf-cst-matchp cst "null")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-name-nonleaf

    (defthm pdf-cst-name-nonleaf
      (implies (pdf-cst-matchp cst "name")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-name-char-nonleaf

    (defthm pdf-cst-name-char-nonleaf
      (implies (pdf-cst-matchp cst "name-char")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-real-nonleaf

    (defthm pdf-cst-real-nonleaf
      (implies (pdf-cst-matchp cst "real")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-int-nonleaf

    (defthm pdf-cst-int-nonleaf
      (implies (pdf-cst-matchp cst "int")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-plus-nonleaf

    (defthm pdf-cst-plus-nonleaf
      (implies (pdf-cst-matchp cst "plus")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-minus-nonleaf

    (defthm pdf-cst-minus-nonleaf
      (implies (pdf-cst-matchp cst "minus")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-slash-nonleaf

    (defthm pdf-cst-slash-nonleaf
      (implies (pdf-cst-matchp cst "slash")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-backslash-nonleaf

    (defthm pdf-cst-backslash-nonleaf
      (implies (pdf-cst-matchp cst "backslash")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-zero-nonleaf

    (defthm pdf-cst-zero-nonleaf
      (implies (pdf-cst-matchp cst "zero")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-string-nonleaf

    (defthm pdf-cst-string-nonleaf
      (implies (pdf-cst-matchp cst "string")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-period-nonleaf

    (defthm pdf-cst-period-nonleaf
      (implies (pdf-cst-matchp cst "period")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-char-nonleaf

    (defthm pdf-cst-char-nonleaf
      (implies (pdf-cst-matchp cst "char")
               (equal (tree-kind cst) :nonleaf)))

    Theorem: pdf-cst-pdf-rulename

    (defthm pdf-cst-pdf-rulename
      (implies (pdf-cst-matchp cst "pdf")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "pdf"))))

    Theorem: pdf-cst-header-rulename

    (defthm pdf-cst-header-rulename
      (implies (pdf-cst-matchp cst "header")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "header"))))

    Theorem: pdf-cst-pdf-marker-rulename

    (defthm pdf-cst-pdf-marker-rulename
      (implies (pdf-cst-matchp cst "pdf-marker")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "pdf-marker"))))

    Theorem: pdf-cst-objects-rulename

    (defthm pdf-cst-objects-rulename
      (implies (pdf-cst-matchp cst "objects")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "objects"))))

    Theorem: pdf-cst-object-rulename

    (defthm pdf-cst-object-rulename
      (implies (pdf-cst-matchp cst "object")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "object"))))

    Theorem: pdf-cst-obj-marker-rulename

    (defthm pdf-cst-obj-marker-rulename
      (implies (pdf-cst-matchp cst "obj-marker")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "obj-marker"))))

    Theorem: pdf-cst-endobj-marker-rulename

    (defthm pdf-cst-endobj-marker-rulename
      (implies (pdf-cst-matchp cst "endobj-marker")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "endobj-marker"))))

    Theorem: pdf-cst-stream-rulename

    (defthm pdf-cst-stream-rulename
      (implies (pdf-cst-matchp cst "stream")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "stream"))))

    Theorem: pdf-cst-stream-marker-rulename

    (defthm pdf-cst-stream-marker-rulename
      (implies (pdf-cst-matchp cst "stream-marker")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "stream-marker"))))

    Theorem: pdf-cst-endstream-marker-rulename

    (defthm pdf-cst-endstream-marker-rulename
      (implies (pdf-cst-matchp cst "endstream-marker")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "endstream-marker"))))

    Theorem: pdf-cst-xref-rulename

    (defthm pdf-cst-xref-rulename
      (implies (pdf-cst-matchp cst "xref")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "xref"))))

    Theorem: pdf-cst-xref-entry-rulename

    (defthm pdf-cst-xref-entry-rulename
      (implies (pdf-cst-matchp cst "xref-entry")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "xref-entry"))))

    Theorem: pdf-cst-use-marker-rulename

    (defthm pdf-cst-use-marker-rulename
      (implies (pdf-cst-matchp cst "use-marker")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "use-marker"))))

    Theorem: pdf-cst-xref-marker-rulename

    (defthm pdf-cst-xref-marker-rulename
      (implies (pdf-cst-matchp cst "xref-marker")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "xref-marker"))))

    Theorem: pdf-cst-xref-int-rulename

    (defthm pdf-cst-xref-int-rulename
      (implies (pdf-cst-matchp cst "xref-int")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "xref-int"))))

    Theorem: pdf-cst-trailer-rulename

    (defthm pdf-cst-trailer-rulename
      (implies (pdf-cst-matchp cst "trailer")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "trailer"))))

    Theorem: pdf-cst-startxref-marker-rulename

    (defthm pdf-cst-startxref-marker-rulename
      (implies (pdf-cst-matchp cst "startxref-marker")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "startxref-marker"))))

    Theorem: pdf-cst-eof-marker-rulename

    (defthm pdf-cst-eof-marker-rulename
      (implies (pdf-cst-matchp cst "eof-marker")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "eof-marker"))))

    Theorem: pdf-cst-trailer-dictionary-rulename

    (defthm pdf-cst-trailer-dictionary-rulename
      (implies (pdf-cst-matchp cst "trailer-dictionary")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "trailer-dictionary"))))

    Theorem: pdf-cst-trailer-key-and-value-rulename

    (defthm pdf-cst-trailer-key-and-value-rulename
      (implies (pdf-cst-matchp cst "trailer-key-and-value")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "trailer-key-and-value"))))

    Theorem: pdf-cst-trailer-marker-rulename

    (defthm pdf-cst-trailer-marker-rulename
      (implies (pdf-cst-matchp cst "trailer-marker")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "trailer-marker"))))

    Theorem: pdf-cst-dictionary-rulename

    (defthm pdf-cst-dictionary-rulename
      (implies (pdf-cst-matchp cst "dictionary")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "dictionary"))))

    Theorem: pdf-cst-dict-entry-rulename

    (defthm pdf-cst-dict-entry-rulename
      (implies (pdf-cst-matchp cst "dict-entry")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "dict-entry"))))

    Theorem: pdf-cst-default-entry-rulename

    (defthm pdf-cst-default-entry-rulename
      (implies (pdf-cst-matchp cst "default-entry")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "default-entry"))))

    Theorem: pdf-cst-type-entry-rulename

    (defthm pdf-cst-type-entry-rulename
      (implies (pdf-cst-matchp cst "type-entry")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "type-entry"))))

    Theorem: pdf-cst-reference-entry-rulename

    (defthm pdf-cst-reference-entry-rulename
      (implies (pdf-cst-matchp cst "reference-entry")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "reference-entry"))))

    Theorem: pdf-cst-reference-array-entry-rulename

    (defthm pdf-cst-reference-array-entry-rulename
      (implies (pdf-cst-matchp cst "reference-array-entry")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "reference-array-entry"))))

    Theorem: pdf-cst-rectangle-entry-rulename

    (defthm pdf-cst-rectangle-entry-rulename
      (implies (pdf-cst-matchp cst "rectangle-entry")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "rectangle-entry"))))

    Theorem: pdf-cst-number-entry-rulename

    (defthm pdf-cst-number-entry-rulename
      (implies (pdf-cst-matchp cst "number-entry")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "number-entry"))))

    Theorem: pdf-cst-name-entry-rulename

    (defthm pdf-cst-name-entry-rulename
      (implies (pdf-cst-matchp cst "name-entry")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "name-entry"))))

    Theorem: pdf-cst-font-entry-rulename

    (defthm pdf-cst-font-entry-rulename
      (implies (pdf-cst-matchp cst "font-entry")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "font-entry"))))

    Theorem: pdf-cst-font-rulename

    (defthm pdf-cst-font-rulename
      (implies (pdf-cst-matchp cst "font")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "font"))))

    Theorem: pdf-cst-dict-key-rulename

    (defthm pdf-cst-dict-key-rulename
      (implies (pdf-cst-matchp cst "dict-key")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "dict-key"))))

    Theorem: pdf-cst-dict-value-rulename

    (defthm pdf-cst-dict-value-rulename
      (implies (pdf-cst-matchp cst "dict-value")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "dict-value"))))

    Theorem: pdf-cst-start-dict-rulename

    (defthm pdf-cst-start-dict-rulename
      (implies (pdf-cst-matchp cst "start-dict")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "start-dict"))))

    Theorem: pdf-cst-end-dict-rulename

    (defthm pdf-cst-end-dict-rulename
      (implies (pdf-cst-matchp cst "end-dict")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "end-dict"))))

    Theorem: pdf-cst-ws-rulename

    (defthm pdf-cst-ws-rulename
      (implies (pdf-cst-matchp cst "ws")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "ws"))))

    Theorem: pdf-cst-digit1-9-rulename

    (defthm pdf-cst-digit1-9-rulename
      (implies (pdf-cst-matchp cst "digit1-9")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "digit1-9"))))

    Theorem: pdf-cst-digit-rulename

    (defthm pdf-cst-digit-rulename
      (implies (pdf-cst-matchp cst "digit")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "digit"))))

    Theorem: pdf-cst-boolean-rulename

    (defthm pdf-cst-boolean-rulename
      (implies (pdf-cst-matchp cst "boolean")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "boolean"))))

    Theorem: pdf-cst-array-rulename

    (defthm pdf-cst-array-rulename
      (implies (pdf-cst-matchp cst "array")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "array"))))

    Theorem: pdf-cst-reference-array-rulename

    (defthm pdf-cst-reference-array-rulename
      (implies (pdf-cst-matchp cst "reference-array")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "reference-array"))))

    Theorem: pdf-cst-reference-rulename

    (defthm pdf-cst-reference-rulename
      (implies (pdf-cst-matchp cst "reference")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "reference"))))

    Theorem: pdf-cst-rectangle-rulename

    (defthm pdf-cst-rectangle-rulename
      (implies (pdf-cst-matchp cst "rectangle")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "rectangle"))))

    Theorem: pdf-cst-left-bracket-rulename

    (defthm pdf-cst-left-bracket-rulename
      (implies (pdf-cst-matchp cst "left-bracket")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "left-bracket"))))

    Theorem: pdf-cst-right-bracket-rulename

    (defthm pdf-cst-right-bracket-rulename
      (implies (pdf-cst-matchp cst "right-bracket")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "right-bracket"))))

    Theorem: pdf-cst-number-rulename

    (defthm pdf-cst-number-rulename
      (implies (pdf-cst-matchp cst "number")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "number"))))

    Theorem: pdf-cst-null-rulename

    (defthm pdf-cst-null-rulename
      (implies (pdf-cst-matchp cst "null")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "null"))))

    Theorem: pdf-cst-name-rulename

    (defthm pdf-cst-name-rulename
      (implies (pdf-cst-matchp cst "name")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "name"))))

    Theorem: pdf-cst-name-char-rulename

    (defthm pdf-cst-name-char-rulename
      (implies (pdf-cst-matchp cst "name-char")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "name-char"))))

    Theorem: pdf-cst-real-rulename

    (defthm pdf-cst-real-rulename
      (implies (pdf-cst-matchp cst "real")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "real"))))

    Theorem: pdf-cst-int-rulename

    (defthm pdf-cst-int-rulename
      (implies (pdf-cst-matchp cst "int")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "int"))))

    Theorem: pdf-cst-plus-rulename

    (defthm pdf-cst-plus-rulename
      (implies (pdf-cst-matchp cst "plus")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "plus"))))

    Theorem: pdf-cst-minus-rulename

    (defthm pdf-cst-minus-rulename
      (implies (pdf-cst-matchp cst "minus")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "minus"))))

    Theorem: pdf-cst-slash-rulename

    (defthm pdf-cst-slash-rulename
      (implies (pdf-cst-matchp cst "slash")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "slash"))))

    Theorem: pdf-cst-backslash-rulename

    (defthm pdf-cst-backslash-rulename
      (implies (pdf-cst-matchp cst "backslash")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "backslash"))))

    Theorem: pdf-cst-zero-rulename

    (defthm pdf-cst-zero-rulename
      (implies (pdf-cst-matchp cst "zero")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "zero"))))

    Theorem: pdf-cst-string-rulename

    (defthm pdf-cst-string-rulename
      (implies (pdf-cst-matchp cst "string")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "string"))))

    Theorem: pdf-cst-period-rulename

    (defthm pdf-cst-period-rulename
      (implies (pdf-cst-matchp cst "period")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "period"))))

    Theorem: pdf-cst-char-rulename

    (defthm pdf-cst-char-rulename
      (implies (pdf-cst-matchp cst "char")
               (equal (tree-nonleaf->rulename? cst)
                      (rulename "char"))))

    Theorem: pdf-cst-pdf-branches-match-alt

    (defthm pdf-cst-pdf-branches-match-alt
     (implies
          (pdf-cst-matchp cst "pdf")
          (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                        "header objects xref trailer")))

    Theorem: pdf-cst-header-branches-match-alt

    (defthm pdf-cst-header-branches-match-alt
     (implies
         (pdf-cst-matchp cst "header")
         (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                       "pdf-marker int period int ws")))

    Theorem: pdf-cst-pdf-marker-branches-match-alt

    (defthm pdf-cst-pdf-marker-branches-match-alt
     (implies (pdf-cst-matchp cst "pdf-marker")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x25.50.44.46.45")))

    Theorem: pdf-cst-objects-branches-match-alt

    (defthm pdf-cst-objects-branches-match-alt
     (implies (pdf-cst-matchp cst "objects")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "*object")))

    Theorem: pdf-cst-object-branches-match-alt

    (defthm pdf-cst-object-branches-match-alt
     (implies
      (pdf-cst-matchp cst "object")
      (pdf-cst-list-list-alt-matchp
       (tree-nonleaf->branches cst)
       "int ws zero obj-marker ws dictionary ws [ stream ] endobj-marker")))

    Theorem: pdf-cst-obj-marker-branches-match-alt

    (defthm pdf-cst-obj-marker-branches-match-alt
     (implies (pdf-cst-matchp cst "obj-marker")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x6F.62.6A")))

    Theorem: pdf-cst-endobj-marker-branches-match-alt

    (defthm pdf-cst-endobj-marker-branches-match-alt
     (implies (pdf-cst-matchp cst "endobj-marker")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x65.6E.64.6F.62.6A")))

    Theorem: pdf-cst-stream-branches-match-alt

    (defthm pdf-cst-stream-branches-match-alt
      (implies (pdf-cst-matchp cst "stream")
               (pdf-cst-list-list-alt-matchp
                    (tree-nonleaf->branches cst)
                    "stream-marker *char endstream-marker")))

    Theorem: pdf-cst-stream-marker-branches-match-alt

    (defthm pdf-cst-stream-marker-branches-match-alt
     (implies (pdf-cst-matchp cst "stream-marker")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x73.74.72.65.61.6D")))

    Theorem: pdf-cst-endstream-marker-branches-match-alt

    (defthm pdf-cst-endstream-marker-branches-match-alt
     (implies
         (pdf-cst-matchp cst "endstream-marker")
         (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                       "%x65.6E.64.73.74.72.65.61.6D")))

    Theorem: pdf-cst-xref-branches-match-alt

    (defthm pdf-cst-xref-branches-match-alt
      (implies (pdf-cst-matchp cst "xref")
               (pdf-cst-list-list-alt-matchp
                    (tree-nonleaf->branches cst)
                    "xref-marker ws zero ws int ws *xref-entry")))

    Theorem: pdf-cst-xref-entry-branches-match-alt

    (defthm pdf-cst-xref-entry-branches-match-alt
      (implies (pdf-cst-matchp cst "xref-entry")
               (pdf-cst-list-list-alt-matchp
                    (tree-nonleaf->branches cst)
                    "xref-int ws xref-int ws use-marker")))

    Theorem: pdf-cst-use-marker-branches-match-alt

    (defthm pdf-cst-use-marker-branches-match-alt
     (implies (pdf-cst-matchp cst "use-marker")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x6E / %x66")))

    Theorem: pdf-cst-xref-marker-branches-match-alt

    (defthm pdf-cst-xref-marker-branches-match-alt
     (implies (pdf-cst-matchp cst "xref-marker")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x78.72.65.66")))

    Theorem: pdf-cst-xref-int-branches-match-alt

    (defthm pdf-cst-xref-int-branches-match-alt
     (implies (pdf-cst-matchp cst "xref-int")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "*digit")))

    Theorem: pdf-cst-trailer-branches-match-alt

    (defthm pdf-cst-trailer-branches-match-alt
     (implies
      (pdf-cst-matchp cst "trailer")
      (pdf-cst-list-list-alt-matchp
       (tree-nonleaf->branches cst)
       "trailer-marker ws dictionary ws startxref-marker ws int eof-marker")))

    Theorem: pdf-cst-startxref-marker-branches-match-alt

    (defthm pdf-cst-startxref-marker-branches-match-alt
     (implies
         (pdf-cst-matchp cst "startxref-marker")
         (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                       "%x73.74.61.72.74.78.72.65.66")))

    Theorem: pdf-cst-eof-marker-branches-match-alt

    (defthm pdf-cst-eof-marker-branches-match-alt
     (implies (pdf-cst-matchp cst "eof-marker")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x25.25.45.4F.46")))

    Theorem: pdf-cst-trailer-dictionary-branches-match-alt

    (defthm pdf-cst-trailer-dictionary-branches-match-alt
      (implies (pdf-cst-matchp cst "trailer-dictionary")
               (pdf-cst-list-list-alt-matchp
                    (tree-nonleaf->branches cst)
                    "start-dict *trailer-key-and-value end-dict")))

    Theorem: pdf-cst-trailer-key-and-value-branches-match-alt

    (defthm pdf-cst-trailer-key-and-value-branches-match-alt
     (implies
      (pdf-cst-matchp cst "trailer-key-and-value")
      (pdf-cst-list-list-alt-matchp
       (tree-nonleaf->branches cst)
       "( %s\"/Size\" int ) / ( %s\"/Root\" reference ) / ( %s\"/Info\" reference ) / ( %s\"/ID\" left-bracket string string right-bracket )")))

    Theorem: pdf-cst-trailer-marker-branches-match-alt

    (defthm pdf-cst-trailer-marker-branches-match-alt
     (implies (pdf-cst-matchp cst "trailer-marker")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x74.72.61.69.6C.65.72")))

    Theorem: pdf-cst-dictionary-branches-match-alt

    (defthm pdf-cst-dictionary-branches-match-alt
     (implies
      (pdf-cst-matchp cst "dictionary")
      (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                    "start-dict *dict-entry end-dict")))

    Theorem: pdf-cst-dict-entry-branches-match-alt

    (defthm pdf-cst-dict-entry-branches-match-alt
     (implies
      (pdf-cst-matchp cst "dict-entry")
      (pdf-cst-list-list-alt-matchp
       (tree-nonleaf->branches cst)
       "type-entry / reference-entry / reference-array-entry / rectangle-entry / number-entry / name-entry / font-entry / default-entry")))

    Theorem: pdf-cst-default-entry-branches-match-alt

    (defthm pdf-cst-default-entry-branches-match-alt
     (implies (pdf-cst-matchp cst "default-entry")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "dict-key ws dict-value")))

    Theorem: pdf-cst-type-entry-branches-match-alt

    (defthm pdf-cst-type-entry-branches-match-alt
     (implies (pdf-cst-matchp cst "type-entry")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%s\"/Type\" name")))

    Theorem: pdf-cst-reference-entry-branches-match-alt

    (defthm pdf-cst-reference-entry-branches-match-alt
     (implies
      (pdf-cst-matchp cst "reference-entry")
      (pdf-cst-list-list-alt-matchp
       (tree-nonleaf->branches cst)
       "%s\"/Parent\" / %s\"/Pages\" / %s\"/Contents\" / %s\"/Resources\" reference")))

    Theorem: pdf-cst-reference-array-entry-branches-match-alt

    (defthm pdf-cst-reference-array-entry-branches-match-alt
      (implies
           (pdf-cst-matchp cst "reference-array-entry")
           (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                         "%s\"/Kids\" reference-array")))

    Theorem: pdf-cst-rectangle-entry-branches-match-alt

    (defthm pdf-cst-rectangle-entry-branches-match-alt
      (implies (pdf-cst-matchp cst "rectangle-entry")
               (pdf-cst-list-list-alt-matchp
                    (tree-nonleaf->branches cst)
                    "%s\"/MediaBox\" / %s\"CropBox\" rectangle")))

    Theorem: pdf-cst-number-entry-branches-match-alt

    (defthm pdf-cst-number-entry-branches-match-alt
      (implies (pdf-cst-matchp cst "number-entry")
               (pdf-cst-list-list-alt-matchp
                    (tree-nonleaf->branches cst)
                    "( %s\"/Count\" ) / ( %s\"/Length\" ) number")))

    Theorem: pdf-cst-name-entry-branches-match-alt

    (defthm pdf-cst-name-entry-branches-match-alt
     (implies
      (pdf-cst-matchp cst "name-entry")
      (pdf-cst-list-list-alt-matchp
       (tree-nonleaf->branches cst)
       "( %s\"/Subtype\" ) / ( %s\"/BaseFont\" ) / ( %s\"/Encoding\" ) name")))

    Theorem: pdf-cst-font-entry-branches-match-alt

    (defthm pdf-cst-font-entry-branches-match-alt
     (implies (pdf-cst-matchp cst "font-entry")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%s\"/Font\" font")))

    Theorem: pdf-cst-font-branches-match-alt

    (defthm pdf-cst-font-branches-match-alt
      (implies (pdf-cst-matchp cst "font")
               (pdf-cst-list-list-alt-matchp
                    (tree-nonleaf->branches cst)
                    "start-dict name reference end-dict")))

    Theorem: pdf-cst-dict-key-branches-match-alt

    (defthm pdf-cst-dict-key-branches-match-alt
     (implies (pdf-cst-matchp cst "dict-key")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "backslash *char")))

    Theorem: pdf-cst-dict-value-branches-match-alt

    (defthm pdf-cst-dict-value-branches-match-alt
     (implies
      (pdf-cst-matchp cst "dict-value")
      (pdf-cst-list-list-alt-matchp
       (tree-nonleaf->branches cst)
       "boolean / number / name / array / dictionary / null / rectangle / reference / string")))

    Theorem: pdf-cst-start-dict-branches-match-alt

    (defthm pdf-cst-start-dict-branches-match-alt
     (implies (pdf-cst-matchp cst "start-dict")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x3C.3C")))

    Theorem: pdf-cst-end-dict-branches-match-alt

    (defthm pdf-cst-end-dict-branches-match-alt
     (implies (pdf-cst-matchp cst "end-dict")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x3E.3E")))

    Theorem: pdf-cst-ws-branches-match-alt

    (defthm pdf-cst-ws-branches-match-alt
      (implies (pdf-cst-matchp cst "ws")
               (pdf-cst-list-list-alt-matchp
                    (tree-nonleaf->branches cst)
                    "*( %x0 / %x9 / %xA / %xC / %xD / %x20 )")))

    Theorem: pdf-cst-digit1-9-branches-match-alt

    (defthm pdf-cst-digit1-9-branches-match-alt
     (implies (pdf-cst-matchp cst "digit1-9")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x31-39")))

    Theorem: pdf-cst-digit-branches-match-alt

    (defthm pdf-cst-digit-branches-match-alt
     (implies (pdf-cst-matchp cst "digit")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x30-39")))

    Theorem: pdf-cst-boolean-branches-match-alt

    (defthm pdf-cst-boolean-branches-match-alt
     (implies (pdf-cst-matchp cst "boolean")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%s\"true\" / %s\"false\"")))

    Theorem: pdf-cst-array-branches-match-alt

    (defthm pdf-cst-array-branches-match-alt
      (implies (pdf-cst-matchp cst "array")
               (pdf-cst-list-list-alt-matchp
                    (tree-nonleaf->branches cst)
                    "left-bracket *char right-bracket")))

    Theorem: pdf-cst-reference-array-branches-match-alt

    (defthm pdf-cst-reference-array-branches-match-alt
      (implies (pdf-cst-matchp cst "reference-array")
               (pdf-cst-list-list-alt-matchp
                    (tree-nonleaf->branches cst)
                    "left-bracket *reference right-bracket")))

    Theorem: pdf-cst-reference-branches-match-alt

    (defthm pdf-cst-reference-branches-match-alt
     (implies (pdf-cst-matchp cst "reference")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "int %x20 zero %x52")))

    Theorem: pdf-cst-rectangle-branches-match-alt

    (defthm pdf-cst-rectangle-branches-match-alt
     (implies
        (pdf-cst-matchp cst "rectangle")
        (pdf-cst-list-list-alt-matchp
             (tree-nonleaf->branches cst)
             "left-bracket number number number number right-bracket")))

    Theorem: pdf-cst-left-bracket-branches-match-alt

    (defthm pdf-cst-left-bracket-branches-match-alt
     (implies (pdf-cst-matchp cst "left-bracket")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x5B")))

    Theorem: pdf-cst-right-bracket-branches-match-alt

    (defthm pdf-cst-right-bracket-branches-match-alt
     (implies (pdf-cst-matchp cst "right-bracket")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x5D")))

    Theorem: pdf-cst-number-branches-match-alt

    (defthm pdf-cst-number-branches-match-alt
     (implies
          (pdf-cst-matchp cst "number")
          (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                        "[ plus / minus ] real / int")))

    Theorem: pdf-cst-null-branches-match-alt

    (defthm pdf-cst-null-branches-match-alt
     (implies (pdf-cst-matchp cst "null")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%s\"null\"")))

    Theorem: pdf-cst-name-branches-match-alt

    (defthm pdf-cst-name-branches-match-alt
     (implies (pdf-cst-matchp cst "name")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "slash name-char")))

    Theorem: pdf-cst-name-char-branches-match-alt

    (defthm pdf-cst-name-char-branches-match-alt
     (implies (pdf-cst-matchp cst "name-char")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x20-7E")))

    Theorem: pdf-cst-real-branches-match-alt

    (defthm pdf-cst-real-branches-match-alt
     (implies (pdf-cst-matchp cst "real")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "int period int")))

    Theorem: pdf-cst-int-branches-match-alt

    (defthm pdf-cst-int-branches-match-alt
      (implies
           (pdf-cst-matchp cst "int")
           (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                         "zero / ( digit1-9 *digit )")))

    Theorem: pdf-cst-plus-branches-match-alt

    (defthm pdf-cst-plus-branches-match-alt
     (implies (pdf-cst-matchp cst "plus")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x2B")))

    Theorem: pdf-cst-minus-branches-match-alt

    (defthm pdf-cst-minus-branches-match-alt
     (implies (pdf-cst-matchp cst "minus")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x2D")))

    Theorem: pdf-cst-slash-branches-match-alt

    (defthm pdf-cst-slash-branches-match-alt
     (implies (pdf-cst-matchp cst "slash")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x2F")))

    Theorem: pdf-cst-backslash-branches-match-alt

    (defthm pdf-cst-backslash-branches-match-alt
     (implies (pdf-cst-matchp cst "backslash")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x5C")))

    Theorem: pdf-cst-zero-branches-match-alt

    (defthm pdf-cst-zero-branches-match-alt
     (implies (pdf-cst-matchp cst "zero")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x30")))

    Theorem: pdf-cst-string-branches-match-alt

    (defthm pdf-cst-string-branches-match-alt
     (implies (pdf-cst-matchp cst "string")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "*char")))

    Theorem: pdf-cst-period-branches-match-alt

    (defthm pdf-cst-period-branches-match-alt
     (implies (pdf-cst-matchp cst "period")
              (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                            "%x2E")))

    Theorem: pdf-cst-char-branches-match-alt

    (defthm pdf-cst-char-branches-match-alt
     (implies
      (pdf-cst-matchp cst "char")
      (pdf-cst-list-list-alt-matchp (tree-nonleaf->branches cst)
                                    "%x20-21 / %x23-5B / %x5D-10FFFF")))

    Theorem: pdf-cst-pdf-concs

    (defthm pdf-cst-pdf-concs
     (implies
      (pdf-cst-list-list-alt-matchp cstss "header objects xref trailer")
      (or (pdf-cst-list-list-conc-matchp
               cstss "header objects xref trailer"))))

    Theorem: pdf-cst-header-concs

    (defthm pdf-cst-header-concs
      (implies (pdf-cst-list-list-alt-matchp
                    cstss "pdf-marker int period int ws")
               (or (pdf-cst-list-list-conc-matchp
                        cstss "pdf-marker int period int ws"))))

    Theorem: pdf-cst-pdf-marker-concs

    (defthm pdf-cst-pdf-marker-concs
     (implies
         (pdf-cst-list-list-alt-matchp cstss "%x25.50.44.46.45")
         (or (pdf-cst-list-list-conc-matchp cstss "%x25.50.44.46.45"))))

    Theorem: pdf-cst-objects-concs

    (defthm pdf-cst-objects-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "*object")
               (or (pdf-cst-list-list-conc-matchp cstss "*object"))))

    Theorem: pdf-cst-object-concs

    (defthm pdf-cst-object-concs
     (implies
      (pdf-cst-list-list-alt-matchp
       cstss
       "int ws zero obj-marker ws dictionary ws [ stream ] endobj-marker")
      (or
       (pdf-cst-list-list-conc-matchp
        cstss
        "int ws zero obj-marker ws dictionary ws [ stream ] endobj-marker"))))

    Theorem: pdf-cst-obj-marker-concs

    (defthm pdf-cst-obj-marker-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x6F.62.6A")
               (or (pdf-cst-list-list-conc-matchp cstss "%x6F.62.6A"))))

    Theorem: pdf-cst-endobj-marker-concs

    (defthm pdf-cst-endobj-marker-concs
     (implies
      (pdf-cst-list-list-alt-matchp cstss "%x65.6E.64.6F.62.6A")
      (or (pdf-cst-list-list-conc-matchp cstss "%x65.6E.64.6F.62.6A"))))

    Theorem: pdf-cst-stream-concs

    (defthm pdf-cst-stream-concs
      (implies (pdf-cst-list-list-alt-matchp
                    cstss
                    "stream-marker *char endstream-marker")
               (or (pdf-cst-list-list-conc-matchp
                        cstss
                        "stream-marker *char endstream-marker"))))

    Theorem: pdf-cst-stream-marker-concs

    (defthm pdf-cst-stream-marker-concs
     (implies
      (pdf-cst-list-list-alt-matchp cstss "%x73.74.72.65.61.6D")
      (or (pdf-cst-list-list-conc-matchp cstss "%x73.74.72.65.61.6D"))))

    Theorem: pdf-cst-endstream-marker-concs

    (defthm pdf-cst-endstream-marker-concs
      (implies (pdf-cst-list-list-alt-matchp
                    cstss "%x65.6E.64.73.74.72.65.61.6D")
               (or (pdf-cst-list-list-conc-matchp
                        cstss "%x65.6E.64.73.74.72.65.61.6D"))))

    Theorem: pdf-cst-xref-concs

    (defthm pdf-cst-xref-concs
      (implies (pdf-cst-list-list-alt-matchp
                    cstss
                    "xref-marker ws zero ws int ws *xref-entry")
               (or (pdf-cst-list-list-conc-matchp
                        cstss
                        "xref-marker ws zero ws int ws *xref-entry"))))

    Theorem: pdf-cst-xref-entry-concs

    (defthm pdf-cst-xref-entry-concs
      (implies (pdf-cst-list-list-alt-matchp
                    cstss
                    "xref-int ws xref-int ws use-marker")
               (or (pdf-cst-list-list-conc-matchp
                        cstss
                        "xref-int ws xref-int ws use-marker"))))

    Theorem: pdf-cst-use-marker-concs

    (defthm pdf-cst-use-marker-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x6E / %x66")
               (or (pdf-cst-list-list-conc-matchp cstss "%x6E")
                   (pdf-cst-list-list-conc-matchp cstss "%x66"))))

    Theorem: pdf-cst-xref-marker-concs

    (defthm pdf-cst-xref-marker-concs
      (implies
           (pdf-cst-list-list-alt-matchp cstss "%x78.72.65.66")
           (or (pdf-cst-list-list-conc-matchp cstss "%x78.72.65.66"))))

    Theorem: pdf-cst-xref-int-concs

    (defthm pdf-cst-xref-int-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "*digit")
               (or (pdf-cst-list-list-conc-matchp cstss "*digit"))))

    Theorem: pdf-cst-trailer-concs

    (defthm pdf-cst-trailer-concs
     (implies
      (pdf-cst-list-list-alt-matchp
       cstss
       "trailer-marker ws dictionary ws startxref-marker ws int eof-marker")
      (or
       (pdf-cst-list-list-conc-matchp
        cstss
        "trailer-marker ws dictionary ws startxref-marker ws int eof-marker"))))

    Theorem: pdf-cst-startxref-marker-concs

    (defthm pdf-cst-startxref-marker-concs
      (implies (pdf-cst-list-list-alt-matchp
                    cstss "%x73.74.61.72.74.78.72.65.66")
               (or (pdf-cst-list-list-conc-matchp
                        cstss "%x73.74.61.72.74.78.72.65.66"))))

    Theorem: pdf-cst-eof-marker-concs

    (defthm pdf-cst-eof-marker-concs
     (implies
         (pdf-cst-list-list-alt-matchp cstss "%x25.25.45.4F.46")
         (or (pdf-cst-list-list-conc-matchp cstss "%x25.25.45.4F.46"))))

    Theorem: pdf-cst-trailer-dictionary-concs

    (defthm pdf-cst-trailer-dictionary-concs
      (implies (pdf-cst-list-list-alt-matchp
                    cstss
                    "start-dict *trailer-key-and-value end-dict")
               (or (pdf-cst-list-list-conc-matchp
                        cstss
                        "start-dict *trailer-key-and-value end-dict"))))

    Theorem: pdf-cst-trailer-key-and-value-concs

    (defthm pdf-cst-trailer-key-and-value-concs
     (implies
      (pdf-cst-list-list-alt-matchp
       cstss
       "( %s\"/Size\" int ) / ( %s\"/Root\" reference ) / ( %s\"/Info\" reference ) / ( %s\"/ID\" left-bracket string string right-bracket )")
      (or
         (pdf-cst-list-list-conc-matchp cstss "( %s\"/Size\" int )")
         (pdf-cst-list-list-conc-matchp cstss "( %s\"/Root\" reference )")
         (pdf-cst-list-list-conc-matchp cstss "( %s\"/Info\" reference )")
         (pdf-cst-list-list-conc-matchp
              cstss
              "( %s\"/ID\" left-bracket string string right-bracket )"))))

    Theorem: pdf-cst-trailer-marker-concs

    (defthm pdf-cst-trailer-marker-concs
     (implies
      (pdf-cst-list-list-alt-matchp cstss "%x74.72.61.69.6C.65.72")
      (or
       (pdf-cst-list-list-conc-matchp cstss "%x74.72.61.69.6C.65.72"))))

    Theorem: pdf-cst-dictionary-concs

    (defthm pdf-cst-dictionary-concs
      (implies (pdf-cst-list-list-alt-matchp
                    cstss "start-dict *dict-entry end-dict")
               (or (pdf-cst-list-list-conc-matchp
                        cstss
                        "start-dict *dict-entry end-dict"))))

    Theorem: pdf-cst-dict-entry-concs

    (defthm pdf-cst-dict-entry-concs
     (implies
      (pdf-cst-list-list-alt-matchp
       cstss
       "type-entry / reference-entry / reference-array-entry / rectangle-entry / number-entry / name-entry / font-entry / default-entry")
      (or (pdf-cst-list-list-conc-matchp cstss "type-entry")
          (pdf-cst-list-list-conc-matchp cstss "reference-entry")
          (pdf-cst-list-list-conc-matchp cstss "reference-array-entry")
          (pdf-cst-list-list-conc-matchp cstss "rectangle-entry")
          (pdf-cst-list-list-conc-matchp cstss "number-entry")
          (pdf-cst-list-list-conc-matchp cstss "name-entry")
          (pdf-cst-list-list-conc-matchp cstss "font-entry")
          (pdf-cst-list-list-conc-matchp cstss "default-entry"))))

    Theorem: pdf-cst-default-entry-concs

    (defthm pdf-cst-default-entry-concs
     (implies
      (pdf-cst-list-list-alt-matchp cstss "dict-key ws dict-value")
      (or
       (pdf-cst-list-list-conc-matchp cstss "dict-key ws dict-value"))))

    Theorem: pdf-cst-type-entry-concs

    (defthm pdf-cst-type-entry-concs
      (implies
           (pdf-cst-list-list-alt-matchp cstss "%s\"/Type\" name")
           (or (pdf-cst-list-list-conc-matchp cstss "%s\"/Type\" name"))))

    Theorem: pdf-cst-reference-entry-concs

    (defthm pdf-cst-reference-entry-concs
     (implies
      (pdf-cst-list-list-alt-matchp
       cstss
       "%s\"/Parent\" / %s\"/Pages\" / %s\"/Contents\" / %s\"/Resources\" reference")
      (or (pdf-cst-list-list-conc-matchp cstss "%s\"/Parent\"")
          (pdf-cst-list-list-conc-matchp cstss "%s\"/Pages\"")
          (pdf-cst-list-list-conc-matchp cstss "%s\"/Contents\"")
          (pdf-cst-list-list-conc-matchp
               cstss "%s\"/Resources\" reference"))))

    Theorem: pdf-cst-reference-array-entry-concs

    (defthm pdf-cst-reference-array-entry-concs
     (implies
        (pdf-cst-list-list-alt-matchp cstss "%s\"/Kids\" reference-array")
        (or (pdf-cst-list-list-conc-matchp
                 cstss "%s\"/Kids\" reference-array"))))

    Theorem: pdf-cst-rectangle-entry-concs

    (defthm pdf-cst-rectangle-entry-concs
     (implies
      (pdf-cst-list-list-alt-matchp
           cstss
           "%s\"/MediaBox\" / %s\"CropBox\" rectangle")
      (or
        (pdf-cst-list-list-conc-matchp cstss "%s\"/MediaBox\"")
        (pdf-cst-list-list-conc-matchp cstss "%s\"CropBox\" rectangle"))))

    Theorem: pdf-cst-number-entry-concs

    (defthm pdf-cst-number-entry-concs
     (implies
      (pdf-cst-list-list-alt-matchp
           cstss
           "( %s\"/Count\" ) / ( %s\"/Length\" ) number")
      (or
       (pdf-cst-list-list-conc-matchp cstss "( %s\"/Count\" )")
       (pdf-cst-list-list-conc-matchp cstss "( %s\"/Length\" ) number"))))

    Theorem: pdf-cst-name-entry-concs

    (defthm pdf-cst-name-entry-concs
     (implies
      (pdf-cst-list-list-alt-matchp
        cstss
        "( %s\"/Subtype\" ) / ( %s\"/BaseFont\" ) / ( %s\"/Encoding\" ) name")
      (or
       (pdf-cst-list-list-conc-matchp cstss "( %s\"/Subtype\" )")
       (pdf-cst-list-list-conc-matchp cstss "( %s\"/BaseFont\" )")
       (pdf-cst-list-list-conc-matchp cstss "( %s\"/Encoding\" ) name"))))

    Theorem: pdf-cst-font-entry-concs

    (defthm pdf-cst-font-entry-concs
      (implies
           (pdf-cst-list-list-alt-matchp cstss "%s\"/Font\" font")
           (or (pdf-cst-list-list-conc-matchp cstss "%s\"/Font\" font"))))

    Theorem: pdf-cst-font-concs

    (defthm pdf-cst-font-concs
      (implies (pdf-cst-list-list-alt-matchp
                    cstss
                    "start-dict name reference end-dict")
               (or (pdf-cst-list-list-conc-matchp
                        cstss
                        "start-dict name reference end-dict"))))

    Theorem: pdf-cst-dict-key-concs

    (defthm pdf-cst-dict-key-concs
     (implies
          (pdf-cst-list-list-alt-matchp cstss "backslash *char")
          (or (pdf-cst-list-list-conc-matchp cstss "backslash *char"))))

    Theorem: pdf-cst-dict-value-concs

    (defthm pdf-cst-dict-value-concs
     (implies
      (pdf-cst-list-list-alt-matchp
       cstss
       "boolean / number / name / array / dictionary / null / rectangle / reference / string")
      (or (pdf-cst-list-list-conc-matchp cstss "boolean")
          (pdf-cst-list-list-conc-matchp cstss "number")
          (pdf-cst-list-list-conc-matchp cstss "name")
          (pdf-cst-list-list-conc-matchp cstss "array")
          (pdf-cst-list-list-conc-matchp cstss "dictionary")
          (pdf-cst-list-list-conc-matchp cstss "null")
          (pdf-cst-list-list-conc-matchp cstss "rectangle")
          (pdf-cst-list-list-conc-matchp cstss "reference")
          (pdf-cst-list-list-conc-matchp cstss "string"))))

    Theorem: pdf-cst-start-dict-concs

    (defthm pdf-cst-start-dict-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x3C.3C")
               (or (pdf-cst-list-list-conc-matchp cstss "%x3C.3C"))))

    Theorem: pdf-cst-end-dict-concs

    (defthm pdf-cst-end-dict-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x3E.3E")
               (or (pdf-cst-list-list-conc-matchp cstss "%x3E.3E"))))

    Theorem: pdf-cst-ws-concs

    (defthm pdf-cst-ws-concs
      (implies (pdf-cst-list-list-alt-matchp
                    cstss
                    "*( %x0 / %x9 / %xA / %xC / %xD / %x20 )")
               (or (pdf-cst-list-list-conc-matchp
                        cstss
                        "*( %x0 / %x9 / %xA / %xC / %xD / %x20 )"))))

    Theorem: pdf-cst-digit1-9-concs

    (defthm pdf-cst-digit1-9-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x31-39")
               (or (pdf-cst-list-list-conc-matchp cstss "%x31-39"))))

    Theorem: pdf-cst-digit-concs

    (defthm pdf-cst-digit-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x30-39")
               (or (pdf-cst-list-list-conc-matchp cstss "%x30-39"))))

    Theorem: pdf-cst-boolean-concs

    (defthm pdf-cst-boolean-concs
      (implies
           (pdf-cst-list-list-alt-matchp cstss "%s\"true\" / %s\"false\"")
           (or (pdf-cst-list-list-conc-matchp cstss "%s\"true\"")
               (pdf-cst-list-list-conc-matchp cstss "%s\"false\""))))

    Theorem: pdf-cst-array-concs

    (defthm pdf-cst-array-concs
     (implies
       (pdf-cst-list-list-alt-matchp cstss
                                     "left-bracket *char right-bracket")
       (or (pdf-cst-list-list-conc-matchp
                cstss
                "left-bracket *char right-bracket"))))

    Theorem: pdf-cst-reference-array-concs

    (defthm pdf-cst-reference-array-concs
      (implies (pdf-cst-list-list-alt-matchp
                    cstss
                    "left-bracket *reference right-bracket")
               (or (pdf-cst-list-list-conc-matchp
                        cstss
                        "left-bracket *reference right-bracket"))))

    Theorem: pdf-cst-reference-concs

    (defthm pdf-cst-reference-concs
     (implies
       (pdf-cst-list-list-alt-matchp cstss "int %x20 zero %x52")
       (or (pdf-cst-list-list-conc-matchp cstss "int %x20 zero %x52"))))

    Theorem: pdf-cst-rectangle-concs

    (defthm pdf-cst-rectangle-concs
     (implies
      (pdf-cst-list-list-alt-matchp
           cstss
           "left-bracket number number number number right-bracket")
      (or
       (pdf-cst-list-list-conc-matchp
            cstss
            "left-bracket number number number number right-bracket"))))

    Theorem: pdf-cst-left-bracket-concs

    (defthm pdf-cst-left-bracket-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x5B")
               (or (pdf-cst-list-list-conc-matchp cstss "%x5B"))))

    Theorem: pdf-cst-right-bracket-concs

    (defthm pdf-cst-right-bracket-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x5D")
               (or (pdf-cst-list-list-conc-matchp cstss "%x5D"))))

    Theorem: pdf-cst-number-concs

    (defthm pdf-cst-number-concs
     (implies
      (pdf-cst-list-list-alt-matchp cstss "[ plus / minus ] real / int")
      (or (pdf-cst-list-list-conc-matchp cstss "[ plus / minus ] real")
          (pdf-cst-list-list-conc-matchp cstss "int"))))

    Theorem: pdf-cst-null-concs

    (defthm pdf-cst-null-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%s\"null\"")
               (or (pdf-cst-list-list-conc-matchp cstss "%s\"null\""))))

    Theorem: pdf-cst-name-concs

    (defthm pdf-cst-name-concs
     (implies
          (pdf-cst-list-list-alt-matchp cstss "slash name-char")
          (or (pdf-cst-list-list-conc-matchp cstss "slash name-char"))))

    Theorem: pdf-cst-name-char-concs

    (defthm pdf-cst-name-char-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x20-7E")
               (or (pdf-cst-list-list-conc-matchp cstss "%x20-7E"))))

    Theorem: pdf-cst-real-concs

    (defthm pdf-cst-real-concs
      (implies
           (pdf-cst-list-list-alt-matchp cstss "int period int")
           (or (pdf-cst-list-list-conc-matchp cstss "int period int"))))

    Theorem: pdf-cst-int-concs

    (defthm pdf-cst-int-concs
     (implies
      (pdf-cst-list-list-alt-matchp cstss "zero / ( digit1-9 *digit )")
      (or (pdf-cst-list-list-conc-matchp cstss "zero")
          (pdf-cst-list-list-conc-matchp cstss "( digit1-9 *digit )"))))

    Theorem: pdf-cst-plus-concs

    (defthm pdf-cst-plus-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x2B")
               (or (pdf-cst-list-list-conc-matchp cstss "%x2B"))))

    Theorem: pdf-cst-minus-concs

    (defthm pdf-cst-minus-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x2D")
               (or (pdf-cst-list-list-conc-matchp cstss "%x2D"))))

    Theorem: pdf-cst-slash-concs

    (defthm pdf-cst-slash-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x2F")
               (or (pdf-cst-list-list-conc-matchp cstss "%x2F"))))

    Theorem: pdf-cst-backslash-concs

    (defthm pdf-cst-backslash-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x5C")
               (or (pdf-cst-list-list-conc-matchp cstss "%x5C"))))

    Theorem: pdf-cst-zero-concs

    (defthm pdf-cst-zero-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x30")
               (or (pdf-cst-list-list-conc-matchp cstss "%x30"))))

    Theorem: pdf-cst-string-concs

    (defthm pdf-cst-string-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "*char")
               (or (pdf-cst-list-list-conc-matchp cstss "*char"))))

    Theorem: pdf-cst-period-concs

    (defthm pdf-cst-period-concs
      (implies (pdf-cst-list-list-alt-matchp cstss "%x2E")
               (or (pdf-cst-list-list-conc-matchp cstss "%x2E"))))

    Theorem: pdf-cst-char-concs

    (defthm pdf-cst-char-concs
     (implies (pdf-cst-list-list-alt-matchp
                   cstss "%x20-21 / %x23-5B / %x5D-10FFFF")
              (or (pdf-cst-list-list-conc-matchp cstss "%x20-21")
                  (pdf-cst-list-list-conc-matchp cstss "%x23-5B")
                  (pdf-cst-list-list-conc-matchp cstss "%x5D-10FFFF"))))

    Theorem: pdf-cst-pdf-marker-conc-matching

    (defthm pdf-cst-pdf-marker-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x25.50.44.46.45")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x25.50.44.46.45"))))

    Theorem: pdf-cst-objects-conc-matching

    (defthm pdf-cst-objects-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "*object")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "*object"))))

    Theorem: pdf-cst-obj-marker-conc-matching

    (defthm pdf-cst-obj-marker-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x6F.62.6A")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x6F.62.6A"))))

    Theorem: pdf-cst-endobj-marker-conc-matching

    (defthm pdf-cst-endobj-marker-conc-matching
      (implies
           (pdf-cst-list-list-conc-matchp cstss "%x65.6E.64.6F.62.6A")
           (and (equal (len cstss) 1)
                (pdf-cst-list-rep-matchp (nth 0 cstss)
                                         "%x65.6E.64.6F.62.6A"))))

    Theorem: pdf-cst-stream-marker-conc-matching

    (defthm pdf-cst-stream-marker-conc-matching
      (implies
           (pdf-cst-list-list-conc-matchp cstss "%x73.74.72.65.61.6D")
           (and (equal (len cstss) 1)
                (pdf-cst-list-rep-matchp (nth 0 cstss)
                                         "%x73.74.72.65.61.6D"))))

    Theorem: pdf-cst-endstream-marker-conc-matching

    (defthm pdf-cst-endstream-marker-conc-matching
     (implies
        (pdf-cst-list-list-conc-matchp
             cstss "%x65.6E.64.73.74.72.65.61.6D")
        (and (equal (len cstss) 1)
             (pdf-cst-list-rep-matchp (nth 0 cstss)
                                      "%x65.6E.64.73.74.72.65.61.6D"))))

    Theorem: pdf-cst-use-marker-conc1-matching

    (defthm pdf-cst-use-marker-conc1-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x6E")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x6E"))))

    Theorem: pdf-cst-use-marker-conc2-matching

    (defthm pdf-cst-use-marker-conc2-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x66")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x66"))))

    Theorem: pdf-cst-xref-marker-conc-matching

    (defthm pdf-cst-xref-marker-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x78.72.65.66")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x78.72.65.66"))))

    Theorem: pdf-cst-xref-int-conc-matching

    (defthm pdf-cst-xref-int-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "*digit")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "*digit"))))

    Theorem: pdf-cst-startxref-marker-conc-matching

    (defthm pdf-cst-startxref-marker-conc-matching
     (implies
        (pdf-cst-list-list-conc-matchp
             cstss "%x73.74.61.72.74.78.72.65.66")
        (and (equal (len cstss) 1)
             (pdf-cst-list-rep-matchp (nth 0 cstss)
                                      "%x73.74.61.72.74.78.72.65.66"))))

    Theorem: pdf-cst-eof-marker-conc-matching

    (defthm pdf-cst-eof-marker-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x25.25.45.4F.46")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x25.25.45.4F.46"))))

    Theorem: pdf-cst-trailer-key-and-value-conc1-matching

    (defthm pdf-cst-trailer-key-and-value-conc1-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "( %s\"/Size\" int )")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "( %s\"/Size\" int )"))))

    Theorem: pdf-cst-trailer-key-and-value-conc2-matching

    (defthm pdf-cst-trailer-key-and-value-conc2-matching
     (implies
         (pdf-cst-list-list-conc-matchp cstss "( %s\"/Root\" reference )")
         (and (equal (len cstss) 1)
              (pdf-cst-list-rep-matchp (nth 0 cstss)
                                       "( %s\"/Root\" reference )"))))

    Theorem: pdf-cst-trailer-key-and-value-conc3-matching

    (defthm pdf-cst-trailer-key-and-value-conc3-matching
     (implies
         (pdf-cst-list-list-conc-matchp cstss "( %s\"/Info\" reference )")
         (and (equal (len cstss) 1)
              (pdf-cst-list-rep-matchp (nth 0 cstss)
                                       "( %s\"/Info\" reference )"))))

    Theorem: pdf-cst-trailer-key-and-value-conc4-matching

    (defthm pdf-cst-trailer-key-and-value-conc4-matching
     (implies
      (pdf-cst-list-list-conc-matchp
           cstss
           "( %s\"/ID\" left-bracket string string right-bracket )")
      (and
         (equal (len cstss) 1)
         (pdf-cst-list-rep-matchp
              (nth 0 cstss)
              "( %s\"/ID\" left-bracket string string right-bracket )"))))

    Theorem: pdf-cst-trailer-marker-conc-matching

    (defthm pdf-cst-trailer-marker-conc-matching
     (implies
          (pdf-cst-list-list-conc-matchp cstss "%x74.72.61.69.6C.65.72")
          (and (equal (len cstss) 1)
               (pdf-cst-list-rep-matchp (nth 0 cstss)
                                        "%x74.72.61.69.6C.65.72"))))

    Theorem: pdf-cst-dict-entry-conc1-matching

    (defthm pdf-cst-dict-entry-conc1-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "type-entry")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "type-entry"))))

    Theorem: pdf-cst-dict-entry-conc2-matching

    (defthm pdf-cst-dict-entry-conc2-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "reference-entry")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "reference-entry"))))

    Theorem: pdf-cst-dict-entry-conc3-matching

    (defthm pdf-cst-dict-entry-conc3-matching
      (implies
           (pdf-cst-list-list-conc-matchp cstss "reference-array-entry")
           (and (equal (len cstss) 1)
                (pdf-cst-list-rep-matchp (nth 0 cstss)
                                         "reference-array-entry"))))

    Theorem: pdf-cst-dict-entry-conc4-matching

    (defthm pdf-cst-dict-entry-conc4-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "rectangle-entry")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "rectangle-entry"))))

    Theorem: pdf-cst-dict-entry-conc5-matching

    (defthm pdf-cst-dict-entry-conc5-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "number-entry")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "number-entry"))))

    Theorem: pdf-cst-dict-entry-conc6-matching

    (defthm pdf-cst-dict-entry-conc6-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "name-entry")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "name-entry"))))

    Theorem: pdf-cst-dict-entry-conc7-matching

    (defthm pdf-cst-dict-entry-conc7-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "font-entry")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "font-entry"))))

    Theorem: pdf-cst-dict-entry-conc8-matching

    (defthm pdf-cst-dict-entry-conc8-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "default-entry")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "default-entry"))))

    Theorem: pdf-cst-reference-entry-conc1-matching

    (defthm pdf-cst-reference-entry-conc1-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%s\"/Parent\"")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%s\"/Parent\""))))

    Theorem: pdf-cst-reference-entry-conc2-matching

    (defthm pdf-cst-reference-entry-conc2-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%s\"/Pages\"")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%s\"/Pages\""))))

    Theorem: pdf-cst-reference-entry-conc3-matching

    (defthm pdf-cst-reference-entry-conc3-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%s\"/Contents\"")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%s\"/Contents\""))))

    Theorem: pdf-cst-rectangle-entry-conc1-matching

    (defthm pdf-cst-rectangle-entry-conc1-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%s\"/MediaBox\"")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%s\"/MediaBox\""))))

    Theorem: pdf-cst-number-entry-conc1-matching

    (defthm pdf-cst-number-entry-conc1-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "( %s\"/Count\" )")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "( %s\"/Count\" )"))))

    Theorem: pdf-cst-name-entry-conc1-matching

    (defthm pdf-cst-name-entry-conc1-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "( %s\"/Subtype\" )")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "( %s\"/Subtype\" )"))))

    Theorem: pdf-cst-name-entry-conc2-matching

    (defthm pdf-cst-name-entry-conc2-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "( %s\"/BaseFont\" )")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "( %s\"/BaseFont\" )"))))

    Theorem: pdf-cst-dict-value-conc1-matching

    (defthm pdf-cst-dict-value-conc1-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "boolean")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "boolean"))))

    Theorem: pdf-cst-dict-value-conc2-matching

    (defthm pdf-cst-dict-value-conc2-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "number")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "number"))))

    Theorem: pdf-cst-dict-value-conc3-matching

    (defthm pdf-cst-dict-value-conc3-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "name")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "name"))))

    Theorem: pdf-cst-dict-value-conc4-matching

    (defthm pdf-cst-dict-value-conc4-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "array")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "array"))))

    Theorem: pdf-cst-dict-value-conc5-matching

    (defthm pdf-cst-dict-value-conc5-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "dictionary")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "dictionary"))))

    Theorem: pdf-cst-dict-value-conc6-matching

    (defthm pdf-cst-dict-value-conc6-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "null")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "null"))))

    Theorem: pdf-cst-dict-value-conc7-matching

    (defthm pdf-cst-dict-value-conc7-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "rectangle")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "rectangle"))))

    Theorem: pdf-cst-dict-value-conc8-matching

    (defthm pdf-cst-dict-value-conc8-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "reference")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "reference"))))

    Theorem: pdf-cst-dict-value-conc9-matching

    (defthm pdf-cst-dict-value-conc9-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "string")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "string"))))

    Theorem: pdf-cst-start-dict-conc-matching

    (defthm pdf-cst-start-dict-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x3C.3C")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x3C.3C"))))

    Theorem: pdf-cst-end-dict-conc-matching

    (defthm pdf-cst-end-dict-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x3E.3E")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x3E.3E"))))

    Theorem: pdf-cst-ws-conc-matching

    (defthm pdf-cst-ws-conc-matching
      (implies (pdf-cst-list-list-conc-matchp
                    cstss
                    "*( %x0 / %x9 / %xA / %xC / %xD / %x20 )")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp
                         (nth 0 cstss)
                         "*( %x0 / %x9 / %xA / %xC / %xD / %x20 )"))))

    Theorem: pdf-cst-digit1-9-conc-matching

    (defthm pdf-cst-digit1-9-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x31-39")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x31-39"))))

    Theorem: pdf-cst-digit-conc-matching

    (defthm pdf-cst-digit-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x30-39")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x30-39"))))

    Theorem: pdf-cst-boolean-conc1-matching

    (defthm pdf-cst-boolean-conc1-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%s\"true\"")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%s\"true\""))))

    Theorem: pdf-cst-boolean-conc2-matching

    (defthm pdf-cst-boolean-conc2-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%s\"false\"")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%s\"false\""))))

    Theorem: pdf-cst-left-bracket-conc-matching

    (defthm pdf-cst-left-bracket-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x5B")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x5B"))))

    Theorem: pdf-cst-right-bracket-conc-matching

    (defthm pdf-cst-right-bracket-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x5D")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x5D"))))

    Theorem: pdf-cst-number-conc2-matching

    (defthm pdf-cst-number-conc2-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "int")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "int"))))

    Theorem: pdf-cst-null-conc-matching

    (defthm pdf-cst-null-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%s\"null\"")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%s\"null\""))))

    Theorem: pdf-cst-name-char-conc-matching

    (defthm pdf-cst-name-char-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x20-7E")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x20-7E"))))

    Theorem: pdf-cst-int-conc1-matching

    (defthm pdf-cst-int-conc1-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "zero")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "zero"))))

    Theorem: pdf-cst-int-conc2-matching

    (defthm pdf-cst-int-conc2-matching
      (implies
           (pdf-cst-list-list-conc-matchp cstss "( digit1-9 *digit )")
           (and (equal (len cstss) 1)
                (pdf-cst-list-rep-matchp (nth 0 cstss)
                                         "( digit1-9 *digit )"))))

    Theorem: pdf-cst-plus-conc-matching

    (defthm pdf-cst-plus-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x2B")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x2B"))))

    Theorem: pdf-cst-minus-conc-matching

    (defthm pdf-cst-minus-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x2D")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x2D"))))

    Theorem: pdf-cst-slash-conc-matching

    (defthm pdf-cst-slash-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x2F")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x2F"))))

    Theorem: pdf-cst-backslash-conc-matching

    (defthm pdf-cst-backslash-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x5C")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x5C"))))

    Theorem: pdf-cst-zero-conc-matching

    (defthm pdf-cst-zero-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x30")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x30"))))

    Theorem: pdf-cst-string-conc-matching

    (defthm pdf-cst-string-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "*char")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "*char"))))

    Theorem: pdf-cst-period-conc-matching

    (defthm pdf-cst-period-conc-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x2E")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x2E"))))

    Theorem: pdf-cst-char-conc1-matching

    (defthm pdf-cst-char-conc1-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x20-21")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x20-21"))))

    Theorem: pdf-cst-char-conc2-matching

    (defthm pdf-cst-char-conc2-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x23-5B")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x23-5B"))))

    Theorem: pdf-cst-char-conc3-matching

    (defthm pdf-cst-char-conc3-matching
      (implies (pdf-cst-list-list-conc-matchp cstss "%x5D-10FFFF")
               (and (equal (len cstss) 1)
                    (pdf-cst-list-rep-matchp (nth 0 cstss)
                                             "%x5D-10FFFF"))))

    Theorem: pdf-cst-pdf-marker-conc-rep-matching

    (defthm pdf-cst-pdf-marker-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x25.50.44.46.45")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x25.50.44.46.45"))))

    Theorem: pdf-cst-obj-marker-conc-rep-matching

    (defthm pdf-cst-obj-marker-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x6F.62.6A")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x6F.62.6A"))))

    Theorem: pdf-cst-endobj-marker-conc-rep-matching

    (defthm pdf-cst-endobj-marker-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x65.6E.64.6F.62.6A")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x65.6E.64.6F.62.6A"))))

    Theorem: pdf-cst-stream-marker-conc-rep-matching

    (defthm pdf-cst-stream-marker-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x73.74.72.65.61.6D")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x73.74.72.65.61.6D"))))

    Theorem: pdf-cst-endstream-marker-conc-rep-matching

    (defthm pdf-cst-endstream-marker-conc-rep-matching
      (implies
           (pdf-cst-list-rep-matchp csts "%x65.6E.64.73.74.72.65.61.6D")
           (and (equal (len csts) 1)
                (pdf-cst-matchp (nth 0 csts)
                                "%x65.6E.64.73.74.72.65.61.6D"))))

    Theorem: pdf-cst-use-marker-conc1-rep-matching

    (defthm pdf-cst-use-marker-conc1-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x6E")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "%x6E"))))

    Theorem: pdf-cst-use-marker-conc2-rep-matching

    (defthm pdf-cst-use-marker-conc2-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x66")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "%x66"))))

    Theorem: pdf-cst-xref-marker-conc-rep-matching

    (defthm pdf-cst-xref-marker-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x78.72.65.66")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x78.72.65.66"))))

    Theorem: pdf-cst-startxref-marker-conc-rep-matching

    (defthm pdf-cst-startxref-marker-conc-rep-matching
      (implies
           (pdf-cst-list-rep-matchp csts "%x73.74.61.72.74.78.72.65.66")
           (and (equal (len csts) 1)
                (pdf-cst-matchp (nth 0 csts)
                                "%x73.74.61.72.74.78.72.65.66"))))

    Theorem: pdf-cst-eof-marker-conc-rep-matching

    (defthm pdf-cst-eof-marker-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x25.25.45.4F.46")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x25.25.45.4F.46"))))

    Theorem: pdf-cst-trailer-key-and-value-conc1-rep-matching

    (defthm pdf-cst-trailer-key-and-value-conc1-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "( %s\"/Size\" int )")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "( %s\"/Size\" int )"))))

    Theorem: pdf-cst-trailer-key-and-value-conc2-rep-matching

    (defthm pdf-cst-trailer-key-and-value-conc2-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "( %s\"/Root\" reference )")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "( %s\"/Root\" reference )"))))

    Theorem: pdf-cst-trailer-key-and-value-conc3-rep-matching

    (defthm pdf-cst-trailer-key-and-value-conc3-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "( %s\"/Info\" reference )")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "( %s\"/Info\" reference )"))))

    Theorem: pdf-cst-trailer-key-and-value-conc4-rep-matching

    (defthm pdf-cst-trailer-key-and-value-conc4-rep-matching
     (implies
      (pdf-cst-list-rep-matchp
           csts
           "( %s\"/ID\" left-bracket string string right-bracket )")
      (and
         (equal (len csts) 1)
         (pdf-cst-matchp
              (nth 0 csts)
              "( %s\"/ID\" left-bracket string string right-bracket )"))))

    Theorem: pdf-cst-trailer-marker-conc-rep-matching

    (defthm pdf-cst-trailer-marker-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x74.72.61.69.6C.65.72")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x74.72.61.69.6C.65.72"))))

    Theorem: pdf-cst-dict-entry-conc1-rep-matching

    (defthm pdf-cst-dict-entry-conc1-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "type-entry")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "type-entry"))))

    Theorem: pdf-cst-dict-entry-conc2-rep-matching

    (defthm pdf-cst-dict-entry-conc2-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "reference-entry")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "reference-entry"))))

    Theorem: pdf-cst-dict-entry-conc3-rep-matching

    (defthm pdf-cst-dict-entry-conc3-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "reference-array-entry")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "reference-array-entry"))))

    Theorem: pdf-cst-dict-entry-conc4-rep-matching

    (defthm pdf-cst-dict-entry-conc4-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "rectangle-entry")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "rectangle-entry"))))

    Theorem: pdf-cst-dict-entry-conc5-rep-matching

    (defthm pdf-cst-dict-entry-conc5-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "number-entry")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "number-entry"))))

    Theorem: pdf-cst-dict-entry-conc6-rep-matching

    (defthm pdf-cst-dict-entry-conc6-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "name-entry")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "name-entry"))))

    Theorem: pdf-cst-dict-entry-conc7-rep-matching

    (defthm pdf-cst-dict-entry-conc7-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "font-entry")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "font-entry"))))

    Theorem: pdf-cst-dict-entry-conc8-rep-matching

    (defthm pdf-cst-dict-entry-conc8-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "default-entry")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "default-entry"))))

    Theorem: pdf-cst-reference-entry-conc1-rep-matching

    (defthm pdf-cst-reference-entry-conc1-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%s\"/Parent\"")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%s\"/Parent\""))))

    Theorem: pdf-cst-reference-entry-conc2-rep-matching

    (defthm pdf-cst-reference-entry-conc2-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%s\"/Pages\"")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%s\"/Pages\""))))

    Theorem: pdf-cst-reference-entry-conc3-rep-matching

    (defthm pdf-cst-reference-entry-conc3-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%s\"/Contents\"")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%s\"/Contents\""))))

    Theorem: pdf-cst-rectangle-entry-conc1-rep-matching

    (defthm pdf-cst-rectangle-entry-conc1-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%s\"/MediaBox\"")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%s\"/MediaBox\""))))

    Theorem: pdf-cst-number-entry-conc1-rep-matching

    (defthm pdf-cst-number-entry-conc1-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "( %s\"/Count\" )")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "( %s\"/Count\" )"))))

    Theorem: pdf-cst-name-entry-conc1-rep-matching

    (defthm pdf-cst-name-entry-conc1-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "( %s\"/Subtype\" )")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "( %s\"/Subtype\" )"))))

    Theorem: pdf-cst-name-entry-conc2-rep-matching

    (defthm pdf-cst-name-entry-conc2-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "( %s\"/BaseFont\" )")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "( %s\"/BaseFont\" )"))))

    Theorem: pdf-cst-dict-value-conc1-rep-matching

    (defthm pdf-cst-dict-value-conc1-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "boolean")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "boolean"))))

    Theorem: pdf-cst-dict-value-conc2-rep-matching

    (defthm pdf-cst-dict-value-conc2-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "number")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "number"))))

    Theorem: pdf-cst-dict-value-conc3-rep-matching

    (defthm pdf-cst-dict-value-conc3-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "name")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "name"))))

    Theorem: pdf-cst-dict-value-conc4-rep-matching

    (defthm pdf-cst-dict-value-conc4-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "array")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "array"))))

    Theorem: pdf-cst-dict-value-conc5-rep-matching

    (defthm pdf-cst-dict-value-conc5-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "dictionary")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "dictionary"))))

    Theorem: pdf-cst-dict-value-conc6-rep-matching

    (defthm pdf-cst-dict-value-conc6-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "null")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "null"))))

    Theorem: pdf-cst-dict-value-conc7-rep-matching

    (defthm pdf-cst-dict-value-conc7-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "rectangle")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "rectangle"))))

    Theorem: pdf-cst-dict-value-conc8-rep-matching

    (defthm pdf-cst-dict-value-conc8-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "reference")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "reference"))))

    Theorem: pdf-cst-dict-value-conc9-rep-matching

    (defthm pdf-cst-dict-value-conc9-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "string")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "string"))))

    Theorem: pdf-cst-start-dict-conc-rep-matching

    (defthm pdf-cst-start-dict-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x3C.3C")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x3C.3C"))))

    Theorem: pdf-cst-end-dict-conc-rep-matching

    (defthm pdf-cst-end-dict-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x3E.3E")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x3E.3E"))))

    Theorem: pdf-cst-digit1-9-conc-rep-matching

    (defthm pdf-cst-digit1-9-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x31-39")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x31-39"))))

    Theorem: pdf-cst-digit-conc-rep-matching

    (defthm pdf-cst-digit-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x30-39")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x30-39"))))

    Theorem: pdf-cst-boolean-conc1-rep-matching

    (defthm pdf-cst-boolean-conc1-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%s\"true\"")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%s\"true\""))))

    Theorem: pdf-cst-boolean-conc2-rep-matching

    (defthm pdf-cst-boolean-conc2-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%s\"false\"")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%s\"false\""))))

    Theorem: pdf-cst-left-bracket-conc-rep-matching

    (defthm pdf-cst-left-bracket-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x5B")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "%x5B"))))

    Theorem: pdf-cst-right-bracket-conc-rep-matching

    (defthm pdf-cst-right-bracket-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x5D")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "%x5D"))))

    Theorem: pdf-cst-number-conc2-rep-matching

    (defthm pdf-cst-number-conc2-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "int")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "int"))))

    Theorem: pdf-cst-null-conc-rep-matching

    (defthm pdf-cst-null-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%s\"null\"")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%s\"null\""))))

    Theorem: pdf-cst-name-char-conc-rep-matching

    (defthm pdf-cst-name-char-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x20-7E")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x20-7E"))))

    Theorem: pdf-cst-int-conc1-rep-matching

    (defthm pdf-cst-int-conc1-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "zero")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "zero"))))

    Theorem: pdf-cst-int-conc2-rep-matching

    (defthm pdf-cst-int-conc2-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "( digit1-9 *digit )")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "( digit1-9 *digit )"))))

    Theorem: pdf-cst-plus-conc-rep-matching

    (defthm pdf-cst-plus-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x2B")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "%x2B"))))

    Theorem: pdf-cst-minus-conc-rep-matching

    (defthm pdf-cst-minus-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x2D")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "%x2D"))))

    Theorem: pdf-cst-slash-conc-rep-matching

    (defthm pdf-cst-slash-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x2F")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "%x2F"))))

    Theorem: pdf-cst-backslash-conc-rep-matching

    (defthm pdf-cst-backslash-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x5C")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "%x5C"))))

    Theorem: pdf-cst-zero-conc-rep-matching

    (defthm pdf-cst-zero-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x30")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "%x30"))))

    Theorem: pdf-cst-period-conc-rep-matching

    (defthm pdf-cst-period-conc-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x2E")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts) "%x2E"))))

    Theorem: pdf-cst-char-conc1-rep-matching

    (defthm pdf-cst-char-conc1-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x20-21")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x20-21"))))

    Theorem: pdf-cst-char-conc2-rep-matching

    (defthm pdf-cst-char-conc2-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x23-5B")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x23-5B"))))

    Theorem: pdf-cst-char-conc3-rep-matching

    (defthm pdf-cst-char-conc3-rep-matching
      (implies (pdf-cst-list-rep-matchp csts "%x5D-10FFFF")
               (and (equal (len csts) 1)
                    (pdf-cst-matchp (nth 0 csts)
                                    "%x5D-10FFFF"))))

    Theorem: pdf-cst-dict-entry-conc-equivs

    (defthm pdf-cst-dict-entry-conc-equivs
     (implies
      (pdf-cst-matchp cst "dict-entry")
      (and
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "type-entry")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "type-entry")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "reference-entry")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "reference-entry")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "reference-array-entry")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "reference-array-entry")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "rectangle-entry")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "rectangle-entry")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "number-entry")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "number-entry")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "name-entry")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "name-entry")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "font-entry")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "font-entry")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "default-entry")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "default-entry"))))))

    Theorem: pdf-cst-dict-value-conc-equivs

    (defthm pdf-cst-dict-value-conc-equivs
     (implies
      (pdf-cst-matchp cst "dict-value")
      (and
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "boolean")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "boolean")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "number")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "number")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "name")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "name")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "array")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "array")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "dictionary")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "dictionary")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "null")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "null")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "rectangle")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "rectangle")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "reference")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "reference")))
        (iff (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "string")
             (equal (tree-nonleaf->rulename?
                         (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                    (rulename "string"))))))

    Function: pdf-cst-dict-entry-conc?

    (defun pdf-cst-dict-entry-conc? (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "dict-entry")))
      (let ((__function__ 'pdf-cst-dict-entry-conc?))
        (declare (ignorable __function__))
        (cond ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "type-entry"))
               1)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "reference-entry"))
               2)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "reference-array-entry"))
               3)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "rectangle-entry"))
               4)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "number-entry"))
               5)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "name-entry"))
               6)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "font-entry"))
               7)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "default-entry"))
               8)
              (t (prog2$ (acl2::impossible) 1)))))

    Theorem: posp-of-pdf-cst-dict-entry-conc?

    (defthm posp-of-pdf-cst-dict-entry-conc?
      (b* ((number (pdf-cst-dict-entry-conc? cst)))
        (posp number))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc?-possibilities

    (defthm pdf-cst-dict-entry-conc?-possibilities
      (b* ((number (pdf-cst-dict-entry-conc? cst)))
        (or (equal number 1)
            (equal number 2)
            (equal number 3)
            (equal number 4)
            (equal number 5)
            (equal number 6)
            (equal number 7)
            (equal number 8)))
      :rule-classes
      ((:forward-chaining
            :trigger-terms ((pdf-cst-dict-entry-conc? cst)))))

    Theorem: pdf-cst-dict-entry-conc?-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc?-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc? (tree-fix cst))
             (pdf-cst-dict-entry-conc? cst)))

    Theorem: pdf-cst-dict-entry-conc?-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc?-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc? cst)
                      (pdf-cst-dict-entry-conc? cst-equiv)))
      :rule-classes :congruence)

    Theorem: pdf-cst-dict-entry-conc?-1-iff-match-conc

    (defthm pdf-cst-dict-entry-conc?-1-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-entry")
        (iff (equal (pdf-cst-dict-entry-conc? cst) 1)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "type-entry"))))

    Theorem: pdf-cst-dict-entry-conc?-2-iff-match-conc

    (defthm pdf-cst-dict-entry-conc?-2-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-entry")
        (iff (equal (pdf-cst-dict-entry-conc? cst) 2)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "reference-entry"))))

    Theorem: pdf-cst-dict-entry-conc?-3-iff-match-conc

    (defthm pdf-cst-dict-entry-conc?-3-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-entry")
        (iff (equal (pdf-cst-dict-entry-conc? cst) 3)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "reference-array-entry"))))

    Theorem: pdf-cst-dict-entry-conc?-4-iff-match-conc

    (defthm pdf-cst-dict-entry-conc?-4-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-entry")
        (iff (equal (pdf-cst-dict-entry-conc? cst) 4)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "rectangle-entry"))))

    Theorem: pdf-cst-dict-entry-conc?-5-iff-match-conc

    (defthm pdf-cst-dict-entry-conc?-5-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-entry")
        (iff (equal (pdf-cst-dict-entry-conc? cst) 5)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "number-entry"))))

    Theorem: pdf-cst-dict-entry-conc?-6-iff-match-conc

    (defthm pdf-cst-dict-entry-conc?-6-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-entry")
        (iff (equal (pdf-cst-dict-entry-conc? cst) 6)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "name-entry"))))

    Theorem: pdf-cst-dict-entry-conc?-7-iff-match-conc

    (defthm pdf-cst-dict-entry-conc?-7-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-entry")
        (iff (equal (pdf-cst-dict-entry-conc? cst) 7)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "font-entry"))))

    Theorem: pdf-cst-dict-entry-conc?-8-iff-match-conc

    (defthm pdf-cst-dict-entry-conc?-8-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-entry")
        (iff (equal (pdf-cst-dict-entry-conc? cst) 8)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "default-entry"))))

    Function: pdf-cst-dict-value-conc?

    (defun pdf-cst-dict-value-conc? (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "dict-value")))
      (let ((__function__ 'pdf-cst-dict-value-conc?))
        (declare (ignorable __function__))
        (cond ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "boolean"))
               1)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "number"))
               2)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "name"))
               3)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "array"))
               4)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "dictionary"))
               5)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "null"))
               6)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "rectangle"))
               7)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "reference"))
               8)
              ((equal (tree-nonleaf->rulename?
                           (nth 0 (nth 0 (tree-nonleaf->branches cst))))
                      (rulename "string"))
               9)
              (t (prog2$ (acl2::impossible) 1)))))

    Theorem: posp-of-pdf-cst-dict-value-conc?

    (defthm posp-of-pdf-cst-dict-value-conc?
      (b* ((number (pdf-cst-dict-value-conc? cst)))
        (posp number))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc?-possibilities

    (defthm pdf-cst-dict-value-conc?-possibilities
      (b* ((number (pdf-cst-dict-value-conc? cst)))
        (or (equal number 1)
            (equal number 2)
            (equal number 3)
            (equal number 4)
            (equal number 5)
            (equal number 6)
            (equal number 7)
            (equal number 8)
            (equal number 9)))
      :rule-classes
      ((:forward-chaining
            :trigger-terms ((pdf-cst-dict-value-conc? cst)))))

    Theorem: pdf-cst-dict-value-conc?-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc?-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc? (tree-fix cst))
             (pdf-cst-dict-value-conc? cst)))

    Theorem: pdf-cst-dict-value-conc?-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc?-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc? cst)
                      (pdf-cst-dict-value-conc? cst-equiv)))
      :rule-classes :congruence)

    Theorem: pdf-cst-dict-value-conc?-1-iff-match-conc

    (defthm pdf-cst-dict-value-conc?-1-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-value")
        (iff (equal (pdf-cst-dict-value-conc? cst) 1)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "boolean"))))

    Theorem: pdf-cst-dict-value-conc?-2-iff-match-conc

    (defthm pdf-cst-dict-value-conc?-2-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-value")
        (iff (equal (pdf-cst-dict-value-conc? cst) 2)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "number"))))

    Theorem: pdf-cst-dict-value-conc?-3-iff-match-conc

    (defthm pdf-cst-dict-value-conc?-3-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-value")
        (iff (equal (pdf-cst-dict-value-conc? cst) 3)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "name"))))

    Theorem: pdf-cst-dict-value-conc?-4-iff-match-conc

    (defthm pdf-cst-dict-value-conc?-4-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-value")
        (iff (equal (pdf-cst-dict-value-conc? cst) 4)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "array"))))

    Theorem: pdf-cst-dict-value-conc?-5-iff-match-conc

    (defthm pdf-cst-dict-value-conc?-5-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-value")
        (iff (equal (pdf-cst-dict-value-conc? cst) 5)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "dictionary"))))

    Theorem: pdf-cst-dict-value-conc?-6-iff-match-conc

    (defthm pdf-cst-dict-value-conc?-6-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-value")
        (iff (equal (pdf-cst-dict-value-conc? cst) 6)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "null"))))

    Theorem: pdf-cst-dict-value-conc?-7-iff-match-conc

    (defthm pdf-cst-dict-value-conc?-7-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-value")
        (iff (equal (pdf-cst-dict-value-conc? cst) 7)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "rectangle"))))

    Theorem: pdf-cst-dict-value-conc?-8-iff-match-conc

    (defthm pdf-cst-dict-value-conc?-8-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-value")
        (iff (equal (pdf-cst-dict-value-conc? cst) 8)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "reference"))))

    Theorem: pdf-cst-dict-value-conc?-9-iff-match-conc

    (defthm pdf-cst-dict-value-conc?-9-iff-match-conc
     (implies
        (pdf-cst-matchp cst "dict-value")
        (iff (equal (pdf-cst-dict-value-conc? cst) 9)
             (pdf-cst-list-list-conc-matchp (tree-nonleaf->branches cst)
                                            "string"))))

    Function: pdf-cst-pdf-conc

    (defun pdf-cst-pdf-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "pdf")))
      (let ((__function__ 'pdf-cst-pdf-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-pdf-conc

    (defthm tree-list-listp-of-pdf-cst-pdf-conc
      (b* ((cstss (pdf-cst-pdf-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-pdf-conc-match

    (defthm pdf-cst-pdf-conc-match
      (implies (pdf-cst-matchp cst "pdf")
               (b* ((cstss (pdf-cst-pdf-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss "header objects xref trailer")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-pdf-conc-of-tree-fix-cst

    (defthm pdf-cst-pdf-conc-of-tree-fix-cst
      (equal (pdf-cst-pdf-conc (tree-fix cst))
             (pdf-cst-pdf-conc cst)))

    Theorem: pdf-cst-pdf-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-pdf-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-pdf-conc cst)
                      (pdf-cst-pdf-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-header-conc

    (defun pdf-cst-header-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "header")))
      (let ((__function__ 'pdf-cst-header-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-header-conc

    (defthm tree-list-listp-of-pdf-cst-header-conc
      (b* ((cstss (pdf-cst-header-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-header-conc-match

    (defthm pdf-cst-header-conc-match
      (implies (pdf-cst-matchp cst "header")
               (b* ((cstss (pdf-cst-header-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss "pdf-marker int period int ws")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-header-conc-of-tree-fix-cst

    (defthm pdf-cst-header-conc-of-tree-fix-cst
      (equal (pdf-cst-header-conc (tree-fix cst))
             (pdf-cst-header-conc cst)))

    Theorem: pdf-cst-header-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-header-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-header-conc cst)
                      (pdf-cst-header-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-pdf-marker-conc

    (defun pdf-cst-pdf-marker-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "pdf-marker")))
      (let ((__function__ 'pdf-cst-pdf-marker-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-pdf-marker-conc

    (defthm tree-list-listp-of-pdf-cst-pdf-marker-conc
      (b* ((cstss (pdf-cst-pdf-marker-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-pdf-marker-conc-match

    (defthm pdf-cst-pdf-marker-conc-match
      (implies
           (pdf-cst-matchp cst "pdf-marker")
           (b* ((cstss (pdf-cst-pdf-marker-conc cst)))
             (pdf-cst-list-list-conc-matchp cstss "%x25.50.44.46.45")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-pdf-marker-conc-of-tree-fix-cst

    (defthm pdf-cst-pdf-marker-conc-of-tree-fix-cst
      (equal (pdf-cst-pdf-marker-conc (tree-fix cst))
             (pdf-cst-pdf-marker-conc cst)))

    Theorem: pdf-cst-pdf-marker-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-pdf-marker-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-pdf-marker-conc cst)
                      (pdf-cst-pdf-marker-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-objects-conc

    (defun pdf-cst-objects-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "objects")))
      (let ((__function__ 'pdf-cst-objects-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-objects-conc

    (defthm tree-list-listp-of-pdf-cst-objects-conc
      (b* ((cstss (pdf-cst-objects-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-objects-conc-match

    (defthm pdf-cst-objects-conc-match
      (implies (pdf-cst-matchp cst "objects")
               (b* ((cstss (pdf-cst-objects-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "*object")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-objects-conc-of-tree-fix-cst

    (defthm pdf-cst-objects-conc-of-tree-fix-cst
      (equal (pdf-cst-objects-conc (tree-fix cst))
             (pdf-cst-objects-conc cst)))

    Theorem: pdf-cst-objects-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-objects-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-objects-conc cst)
                      (pdf-cst-objects-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-object-conc

    (defun pdf-cst-object-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "object")))
      (let ((__function__ 'pdf-cst-object-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-object-conc

    (defthm tree-list-listp-of-pdf-cst-object-conc
      (b* ((cstss (pdf-cst-object-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-object-conc-match

    (defthm pdf-cst-object-conc-match
     (implies
      (pdf-cst-matchp cst "object")
      (b* ((cstss (pdf-cst-object-conc cst)))
       (pdf-cst-list-list-conc-matchp
        cstss
        "int ws zero obj-marker ws dictionary ws [ stream ] endobj-marker")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-object-conc-of-tree-fix-cst

    (defthm pdf-cst-object-conc-of-tree-fix-cst
      (equal (pdf-cst-object-conc (tree-fix cst))
             (pdf-cst-object-conc cst)))

    Theorem: pdf-cst-object-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-object-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-object-conc cst)
                      (pdf-cst-object-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-obj-marker-conc

    (defun pdf-cst-obj-marker-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "obj-marker")))
      (let ((__function__ 'pdf-cst-obj-marker-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-obj-marker-conc

    (defthm tree-list-listp-of-pdf-cst-obj-marker-conc
      (b* ((cstss (pdf-cst-obj-marker-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-obj-marker-conc-match

    (defthm pdf-cst-obj-marker-conc-match
      (implies (pdf-cst-matchp cst "obj-marker")
               (b* ((cstss (pdf-cst-obj-marker-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x6F.62.6A")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-obj-marker-conc-of-tree-fix-cst

    (defthm pdf-cst-obj-marker-conc-of-tree-fix-cst
      (equal (pdf-cst-obj-marker-conc (tree-fix cst))
             (pdf-cst-obj-marker-conc cst)))

    Theorem: pdf-cst-obj-marker-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-obj-marker-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-obj-marker-conc cst)
                      (pdf-cst-obj-marker-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-endobj-marker-conc

    (defun pdf-cst-endobj-marker-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "endobj-marker")))
      (let ((__function__ 'pdf-cst-endobj-marker-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-endobj-marker-conc

    (defthm tree-list-listp-of-pdf-cst-endobj-marker-conc
      (b* ((cstss (pdf-cst-endobj-marker-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-endobj-marker-conc-match

    (defthm pdf-cst-endobj-marker-conc-match
     (implies
         (pdf-cst-matchp cst "endobj-marker")
         (b* ((cstss (pdf-cst-endobj-marker-conc cst)))
           (pdf-cst-list-list-conc-matchp cstss "%x65.6E.64.6F.62.6A")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-endobj-marker-conc-of-tree-fix-cst

    (defthm pdf-cst-endobj-marker-conc-of-tree-fix-cst
      (equal (pdf-cst-endobj-marker-conc (tree-fix cst))
             (pdf-cst-endobj-marker-conc cst)))

    Theorem: pdf-cst-endobj-marker-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-endobj-marker-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-endobj-marker-conc cst)
                      (pdf-cst-endobj-marker-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-stream-conc

    (defun pdf-cst-stream-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "stream")))
      (let ((__function__ 'pdf-cst-stream-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-stream-conc

    (defthm tree-list-listp-of-pdf-cst-stream-conc
      (b* ((cstss (pdf-cst-stream-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-stream-conc-match

    (defthm pdf-cst-stream-conc-match
      (implies (pdf-cst-matchp cst "stream")
               (b* ((cstss (pdf-cst-stream-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss
                      "stream-marker *char endstream-marker")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-stream-conc-of-tree-fix-cst

    (defthm pdf-cst-stream-conc-of-tree-fix-cst
      (equal (pdf-cst-stream-conc (tree-fix cst))
             (pdf-cst-stream-conc cst)))

    Theorem: pdf-cst-stream-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-stream-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-stream-conc cst)
                      (pdf-cst-stream-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-stream-marker-conc

    (defun pdf-cst-stream-marker-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "stream-marker")))
      (let ((__function__ 'pdf-cst-stream-marker-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-stream-marker-conc

    (defthm tree-list-listp-of-pdf-cst-stream-marker-conc
      (b* ((cstss (pdf-cst-stream-marker-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-stream-marker-conc-match

    (defthm pdf-cst-stream-marker-conc-match
     (implies
         (pdf-cst-matchp cst "stream-marker")
         (b* ((cstss (pdf-cst-stream-marker-conc cst)))
           (pdf-cst-list-list-conc-matchp cstss "%x73.74.72.65.61.6D")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-stream-marker-conc-of-tree-fix-cst

    (defthm pdf-cst-stream-marker-conc-of-tree-fix-cst
      (equal (pdf-cst-stream-marker-conc (tree-fix cst))
             (pdf-cst-stream-marker-conc cst)))

    Theorem: pdf-cst-stream-marker-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-stream-marker-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-stream-marker-conc cst)
                      (pdf-cst-stream-marker-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-endstream-marker-conc

    (defun pdf-cst-endstream-marker-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "endstream-marker")))
      (let ((__function__ 'pdf-cst-endstream-marker-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-endstream-marker-conc

    (defthm tree-list-listp-of-pdf-cst-endstream-marker-conc
      (b* ((cstss (pdf-cst-endstream-marker-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-endstream-marker-conc-match

    (defthm pdf-cst-endstream-marker-conc-match
      (implies (pdf-cst-matchp cst "endstream-marker")
               (b* ((cstss (pdf-cst-endstream-marker-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss "%x65.6E.64.73.74.72.65.61.6D")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-endstream-marker-conc-of-tree-fix-cst

    (defthm pdf-cst-endstream-marker-conc-of-tree-fix-cst
      (equal (pdf-cst-endstream-marker-conc (tree-fix cst))
             (pdf-cst-endstream-marker-conc cst)))

    Theorem: pdf-cst-endstream-marker-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-endstream-marker-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-endstream-marker-conc cst)
                      (pdf-cst-endstream-marker-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-xref-conc

    (defun pdf-cst-xref-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "xref")))
      (let ((__function__ 'pdf-cst-xref-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-xref-conc

    (defthm tree-list-listp-of-pdf-cst-xref-conc
      (b* ((cstss (pdf-cst-xref-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-xref-conc-match

    (defthm pdf-cst-xref-conc-match
      (implies (pdf-cst-matchp cst "xref")
               (b* ((cstss (pdf-cst-xref-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss
                      "xref-marker ws zero ws int ws *xref-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-xref-conc-of-tree-fix-cst

    (defthm pdf-cst-xref-conc-of-tree-fix-cst
      (equal (pdf-cst-xref-conc (tree-fix cst))
             (pdf-cst-xref-conc cst)))

    Theorem: pdf-cst-xref-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-xref-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-xref-conc cst)
                      (pdf-cst-xref-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-xref-entry-conc

    (defun pdf-cst-xref-entry-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "xref-entry")))
      (let ((__function__ 'pdf-cst-xref-entry-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-xref-entry-conc

    (defthm tree-list-listp-of-pdf-cst-xref-entry-conc
      (b* ((cstss (pdf-cst-xref-entry-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-xref-entry-conc-match

    (defthm pdf-cst-xref-entry-conc-match
      (implies (pdf-cst-matchp cst "xref-entry")
               (b* ((cstss (pdf-cst-xref-entry-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss
                      "xref-int ws xref-int ws use-marker")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-xref-entry-conc-of-tree-fix-cst

    (defthm pdf-cst-xref-entry-conc-of-tree-fix-cst
      (equal (pdf-cst-xref-entry-conc (tree-fix cst))
             (pdf-cst-xref-entry-conc cst)))

    Theorem: pdf-cst-xref-entry-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-xref-entry-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-xref-entry-conc cst)
                      (pdf-cst-xref-entry-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-xref-marker-conc

    (defun pdf-cst-xref-marker-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "xref-marker")))
      (let ((__function__ 'pdf-cst-xref-marker-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-xref-marker-conc

    (defthm tree-list-listp-of-pdf-cst-xref-marker-conc
      (b* ((cstss (pdf-cst-xref-marker-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-xref-marker-conc-match

    (defthm pdf-cst-xref-marker-conc-match
      (implies (pdf-cst-matchp cst "xref-marker")
               (b* ((cstss (pdf-cst-xref-marker-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x78.72.65.66")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-xref-marker-conc-of-tree-fix-cst

    (defthm pdf-cst-xref-marker-conc-of-tree-fix-cst
      (equal (pdf-cst-xref-marker-conc (tree-fix cst))
             (pdf-cst-xref-marker-conc cst)))

    Theorem: pdf-cst-xref-marker-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-xref-marker-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-xref-marker-conc cst)
                      (pdf-cst-xref-marker-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-xref-int-conc

    (defun pdf-cst-xref-int-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "xref-int")))
      (let ((__function__ 'pdf-cst-xref-int-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-xref-int-conc

    (defthm tree-list-listp-of-pdf-cst-xref-int-conc
      (b* ((cstss (pdf-cst-xref-int-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-xref-int-conc-match

    (defthm pdf-cst-xref-int-conc-match
      (implies (pdf-cst-matchp cst "xref-int")
               (b* ((cstss (pdf-cst-xref-int-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "*digit")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-xref-int-conc-of-tree-fix-cst

    (defthm pdf-cst-xref-int-conc-of-tree-fix-cst
      (equal (pdf-cst-xref-int-conc (tree-fix cst))
             (pdf-cst-xref-int-conc cst)))

    Theorem: pdf-cst-xref-int-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-xref-int-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-xref-int-conc cst)
                      (pdf-cst-xref-int-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-trailer-conc

    (defun pdf-cst-trailer-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "trailer")))
      (let ((__function__ 'pdf-cst-trailer-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-trailer-conc

    (defthm tree-list-listp-of-pdf-cst-trailer-conc
      (b* ((cstss (pdf-cst-trailer-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-trailer-conc-match

    (defthm pdf-cst-trailer-conc-match
     (implies
      (pdf-cst-matchp cst "trailer")
      (b* ((cstss (pdf-cst-trailer-conc cst)))
       (pdf-cst-list-list-conc-matchp
        cstss
        "trailer-marker ws dictionary ws startxref-marker ws int eof-marker")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-trailer-conc-of-tree-fix-cst

    (defthm pdf-cst-trailer-conc-of-tree-fix-cst
      (equal (pdf-cst-trailer-conc (tree-fix cst))
             (pdf-cst-trailer-conc cst)))

    Theorem: pdf-cst-trailer-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-trailer-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-trailer-conc cst)
                      (pdf-cst-trailer-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-startxref-marker-conc

    (defun pdf-cst-startxref-marker-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "startxref-marker")))
      (let ((__function__ 'pdf-cst-startxref-marker-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-startxref-marker-conc

    (defthm tree-list-listp-of-pdf-cst-startxref-marker-conc
      (b* ((cstss (pdf-cst-startxref-marker-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-startxref-marker-conc-match

    (defthm pdf-cst-startxref-marker-conc-match
      (implies (pdf-cst-matchp cst "startxref-marker")
               (b* ((cstss (pdf-cst-startxref-marker-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss "%x73.74.61.72.74.78.72.65.66")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-startxref-marker-conc-of-tree-fix-cst

    (defthm pdf-cst-startxref-marker-conc-of-tree-fix-cst
      (equal (pdf-cst-startxref-marker-conc (tree-fix cst))
             (pdf-cst-startxref-marker-conc cst)))

    Theorem: pdf-cst-startxref-marker-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-startxref-marker-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-startxref-marker-conc cst)
                      (pdf-cst-startxref-marker-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-eof-marker-conc

    (defun pdf-cst-eof-marker-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "eof-marker")))
      (let ((__function__ 'pdf-cst-eof-marker-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-eof-marker-conc

    (defthm tree-list-listp-of-pdf-cst-eof-marker-conc
      (b* ((cstss (pdf-cst-eof-marker-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-eof-marker-conc-match

    (defthm pdf-cst-eof-marker-conc-match
      (implies
           (pdf-cst-matchp cst "eof-marker")
           (b* ((cstss (pdf-cst-eof-marker-conc cst)))
             (pdf-cst-list-list-conc-matchp cstss "%x25.25.45.4F.46")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-eof-marker-conc-of-tree-fix-cst

    (defthm pdf-cst-eof-marker-conc-of-tree-fix-cst
      (equal (pdf-cst-eof-marker-conc (tree-fix cst))
             (pdf-cst-eof-marker-conc cst)))

    Theorem: pdf-cst-eof-marker-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-eof-marker-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-eof-marker-conc cst)
                      (pdf-cst-eof-marker-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-trailer-dictionary-conc

    (defun pdf-cst-trailer-dictionary-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "trailer-dictionary")))
      (let ((__function__ 'pdf-cst-trailer-dictionary-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-trailer-dictionary-conc

    (defthm tree-list-listp-of-pdf-cst-trailer-dictionary-conc
      (b* ((cstss (pdf-cst-trailer-dictionary-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-trailer-dictionary-conc-match

    (defthm pdf-cst-trailer-dictionary-conc-match
      (implies (pdf-cst-matchp cst "trailer-dictionary")
               (b* ((cstss (pdf-cst-trailer-dictionary-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss
                      "start-dict *trailer-key-and-value end-dict")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-trailer-dictionary-conc-of-tree-fix-cst

    (defthm pdf-cst-trailer-dictionary-conc-of-tree-fix-cst
      (equal (pdf-cst-trailer-dictionary-conc (tree-fix cst))
             (pdf-cst-trailer-dictionary-conc cst)))

    Theorem: pdf-cst-trailer-dictionary-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-trailer-dictionary-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-trailer-dictionary-conc cst)
                      (pdf-cst-trailer-dictionary-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-trailer-marker-conc

    (defun pdf-cst-trailer-marker-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "trailer-marker")))
      (let ((__function__ 'pdf-cst-trailer-marker-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-trailer-marker-conc

    (defthm tree-list-listp-of-pdf-cst-trailer-marker-conc
      (b* ((cstss (pdf-cst-trailer-marker-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-trailer-marker-conc-match

    (defthm pdf-cst-trailer-marker-conc-match
     (implies
      (pdf-cst-matchp cst "trailer-marker")
      (b* ((cstss (pdf-cst-trailer-marker-conc cst)))
        (pdf-cst-list-list-conc-matchp cstss "%x74.72.61.69.6C.65.72")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-trailer-marker-conc-of-tree-fix-cst

    (defthm pdf-cst-trailer-marker-conc-of-tree-fix-cst
      (equal (pdf-cst-trailer-marker-conc (tree-fix cst))
             (pdf-cst-trailer-marker-conc cst)))

    Theorem: pdf-cst-trailer-marker-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-trailer-marker-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-trailer-marker-conc cst)
                      (pdf-cst-trailer-marker-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dictionary-conc

    (defun pdf-cst-dictionary-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "dictionary")))
      (let ((__function__ 'pdf-cst-dictionary-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dictionary-conc

    (defthm tree-list-listp-of-pdf-cst-dictionary-conc
      (b* ((cstss (pdf-cst-dictionary-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dictionary-conc-match

    (defthm pdf-cst-dictionary-conc-match
      (implies (pdf-cst-matchp cst "dictionary")
               (b* ((cstss (pdf-cst-dictionary-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss
                      "start-dict *dict-entry end-dict")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dictionary-conc-of-tree-fix-cst

    (defthm pdf-cst-dictionary-conc-of-tree-fix-cst
      (equal (pdf-cst-dictionary-conc (tree-fix cst))
             (pdf-cst-dictionary-conc cst)))

    Theorem: pdf-cst-dictionary-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dictionary-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dictionary-conc cst)
                      (pdf-cst-dictionary-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc1

    (defun pdf-cst-dict-entry-conc1 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         1))))
      (let ((__function__ 'pdf-cst-dict-entry-conc1))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-entry-conc1

    (defthm tree-list-listp-of-pdf-cst-dict-entry-conc1
      (b* ((cstss (pdf-cst-dict-entry-conc1 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc1-match

    (defthm pdf-cst-dict-entry-conc1-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           1))
               (b* ((cstss (pdf-cst-dict-entry-conc1 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "type-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc1-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc1-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc1 (tree-fix cst))
             (pdf-cst-dict-entry-conc1 cst)))

    Theorem: pdf-cst-dict-entry-conc1-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc1-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc1 cst)
                      (pdf-cst-dict-entry-conc1 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc2

    (defun pdf-cst-dict-entry-conc2 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         2))))
      (let ((__function__ 'pdf-cst-dict-entry-conc2))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-entry-conc2

    (defthm tree-list-listp-of-pdf-cst-dict-entry-conc2
      (b* ((cstss (pdf-cst-dict-entry-conc2 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc2-match

    (defthm pdf-cst-dict-entry-conc2-match
      (implies
           (and (pdf-cst-matchp cst "dict-entry")
                (equal (pdf-cst-dict-entry-conc? cst)
                       2))
           (b* ((cstss (pdf-cst-dict-entry-conc2 cst)))
             (pdf-cst-list-list-conc-matchp cstss "reference-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc2-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc2-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc2 (tree-fix cst))
             (pdf-cst-dict-entry-conc2 cst)))

    Theorem: pdf-cst-dict-entry-conc2-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc2-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc2 cst)
                      (pdf-cst-dict-entry-conc2 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc3

    (defun pdf-cst-dict-entry-conc3 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         3))))
      (let ((__function__ 'pdf-cst-dict-entry-conc3))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-entry-conc3

    (defthm tree-list-listp-of-pdf-cst-dict-entry-conc3
      (b* ((cstss (pdf-cst-dict-entry-conc3 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc3-match

    (defthm pdf-cst-dict-entry-conc3-match
     (implies
       (and (pdf-cst-matchp cst "dict-entry")
            (equal (pdf-cst-dict-entry-conc? cst)
                   3))
       (b* ((cstss (pdf-cst-dict-entry-conc3 cst)))
         (pdf-cst-list-list-conc-matchp cstss "reference-array-entry")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc3-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc3-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc3 (tree-fix cst))
             (pdf-cst-dict-entry-conc3 cst)))

    Theorem: pdf-cst-dict-entry-conc3-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc3-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc3 cst)
                      (pdf-cst-dict-entry-conc3 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc4

    (defun pdf-cst-dict-entry-conc4 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         4))))
      (let ((__function__ 'pdf-cst-dict-entry-conc4))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-entry-conc4

    (defthm tree-list-listp-of-pdf-cst-dict-entry-conc4
      (b* ((cstss (pdf-cst-dict-entry-conc4 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc4-match

    (defthm pdf-cst-dict-entry-conc4-match
      (implies
           (and (pdf-cst-matchp cst "dict-entry")
                (equal (pdf-cst-dict-entry-conc? cst)
                       4))
           (b* ((cstss (pdf-cst-dict-entry-conc4 cst)))
             (pdf-cst-list-list-conc-matchp cstss "rectangle-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc4-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc4-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc4 (tree-fix cst))
             (pdf-cst-dict-entry-conc4 cst)))

    Theorem: pdf-cst-dict-entry-conc4-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc4-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc4 cst)
                      (pdf-cst-dict-entry-conc4 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc5

    (defun pdf-cst-dict-entry-conc5 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         5))))
      (let ((__function__ 'pdf-cst-dict-entry-conc5))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-entry-conc5

    (defthm tree-list-listp-of-pdf-cst-dict-entry-conc5
      (b* ((cstss (pdf-cst-dict-entry-conc5 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc5-match

    (defthm pdf-cst-dict-entry-conc5-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           5))
               (b* ((cstss (pdf-cst-dict-entry-conc5 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "number-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc5-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc5-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc5 (tree-fix cst))
             (pdf-cst-dict-entry-conc5 cst)))

    Theorem: pdf-cst-dict-entry-conc5-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc5-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc5 cst)
                      (pdf-cst-dict-entry-conc5 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc6

    (defun pdf-cst-dict-entry-conc6 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         6))))
      (let ((__function__ 'pdf-cst-dict-entry-conc6))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-entry-conc6

    (defthm tree-list-listp-of-pdf-cst-dict-entry-conc6
      (b* ((cstss (pdf-cst-dict-entry-conc6 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc6-match

    (defthm pdf-cst-dict-entry-conc6-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           6))
               (b* ((cstss (pdf-cst-dict-entry-conc6 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "name-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc6-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc6-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc6 (tree-fix cst))
             (pdf-cst-dict-entry-conc6 cst)))

    Theorem: pdf-cst-dict-entry-conc6-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc6-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc6 cst)
                      (pdf-cst-dict-entry-conc6 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc7

    (defun pdf-cst-dict-entry-conc7 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         7))))
      (let ((__function__ 'pdf-cst-dict-entry-conc7))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-entry-conc7

    (defthm tree-list-listp-of-pdf-cst-dict-entry-conc7
      (b* ((cstss (pdf-cst-dict-entry-conc7 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc7-match

    (defthm pdf-cst-dict-entry-conc7-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           7))
               (b* ((cstss (pdf-cst-dict-entry-conc7 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "font-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc7-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc7-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc7 (tree-fix cst))
             (pdf-cst-dict-entry-conc7 cst)))

    Theorem: pdf-cst-dict-entry-conc7-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc7-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc7 cst)
                      (pdf-cst-dict-entry-conc7 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc8

    (defun pdf-cst-dict-entry-conc8 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         8))))
      (let ((__function__ 'pdf-cst-dict-entry-conc8))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-entry-conc8

    (defthm tree-list-listp-of-pdf-cst-dict-entry-conc8
      (b* ((cstss (pdf-cst-dict-entry-conc8 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc8-match

    (defthm pdf-cst-dict-entry-conc8-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           8))
               (b* ((cstss (pdf-cst-dict-entry-conc8 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "default-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc8-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc8-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc8 (tree-fix cst))
             (pdf-cst-dict-entry-conc8 cst)))

    Theorem: pdf-cst-dict-entry-conc8-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc8-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc8 cst)
                      (pdf-cst-dict-entry-conc8 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-default-entry-conc

    (defun pdf-cst-default-entry-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "default-entry")))
      (let ((__function__ 'pdf-cst-default-entry-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-default-entry-conc

    (defthm tree-list-listp-of-pdf-cst-default-entry-conc
      (b* ((cstss (pdf-cst-default-entry-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-default-entry-conc-match

    (defthm pdf-cst-default-entry-conc-match
     (implies
      (pdf-cst-matchp cst "default-entry")
      (b* ((cstss (pdf-cst-default-entry-conc cst)))
        (pdf-cst-list-list-conc-matchp cstss "dict-key ws dict-value")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-default-entry-conc-of-tree-fix-cst

    (defthm pdf-cst-default-entry-conc-of-tree-fix-cst
      (equal (pdf-cst-default-entry-conc (tree-fix cst))
             (pdf-cst-default-entry-conc cst)))

    Theorem: pdf-cst-default-entry-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-default-entry-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-default-entry-conc cst)
                      (pdf-cst-default-entry-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-type-entry-conc

    (defun pdf-cst-type-entry-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "type-entry")))
      (let ((__function__ 'pdf-cst-type-entry-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-type-entry-conc

    (defthm tree-list-listp-of-pdf-cst-type-entry-conc
      (b* ((cstss (pdf-cst-type-entry-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-type-entry-conc-match

    (defthm pdf-cst-type-entry-conc-match
     (implies (pdf-cst-matchp cst "type-entry")
              (b* ((cstss (pdf-cst-type-entry-conc cst)))
                (pdf-cst-list-list-conc-matchp cstss "%s\"/Type\" name")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-type-entry-conc-of-tree-fix-cst

    (defthm pdf-cst-type-entry-conc-of-tree-fix-cst
      (equal (pdf-cst-type-entry-conc (tree-fix cst))
             (pdf-cst-type-entry-conc cst)))

    Theorem: pdf-cst-type-entry-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-type-entry-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-type-entry-conc cst)
                      (pdf-cst-type-entry-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-reference-array-entry-conc

    (defun pdf-cst-reference-array-entry-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare
           (xargs :guard (pdf-cst-matchp cst "reference-array-entry")))
      (let ((__function__ 'pdf-cst-reference-array-entry-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-reference-array-entry-conc

    (defthm tree-list-listp-of-pdf-cst-reference-array-entry-conc
      (b* ((cstss (pdf-cst-reference-array-entry-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-reference-array-entry-conc-match

    (defthm pdf-cst-reference-array-entry-conc-match
      (implies (pdf-cst-matchp cst "reference-array-entry")
               (b* ((cstss (pdf-cst-reference-array-entry-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss "%s\"/Kids\" reference-array")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-reference-array-entry-conc-of-tree-fix-cst

    (defthm pdf-cst-reference-array-entry-conc-of-tree-fix-cst
      (equal (pdf-cst-reference-array-entry-conc (tree-fix cst))
             (pdf-cst-reference-array-entry-conc cst)))

    Theorem: pdf-cst-reference-array-entry-conc-tree-equiv-congruence-on-cst

    (defthm
        pdf-cst-reference-array-entry-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-reference-array-entry-conc cst)
                      (pdf-cst-reference-array-entry-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-font-entry-conc

    (defun pdf-cst-font-entry-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "font-entry")))
      (let ((__function__ 'pdf-cst-font-entry-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-font-entry-conc

    (defthm tree-list-listp-of-pdf-cst-font-entry-conc
      (b* ((cstss (pdf-cst-font-entry-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-font-entry-conc-match

    (defthm pdf-cst-font-entry-conc-match
     (implies (pdf-cst-matchp cst "font-entry")
              (b* ((cstss (pdf-cst-font-entry-conc cst)))
                (pdf-cst-list-list-conc-matchp cstss "%s\"/Font\" font")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-font-entry-conc-of-tree-fix-cst

    (defthm pdf-cst-font-entry-conc-of-tree-fix-cst
      (equal (pdf-cst-font-entry-conc (tree-fix cst))
             (pdf-cst-font-entry-conc cst)))

    Theorem: pdf-cst-font-entry-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-font-entry-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-font-entry-conc cst)
                      (pdf-cst-font-entry-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-font-conc

    (defun pdf-cst-font-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "font")))
      (let ((__function__ 'pdf-cst-font-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-font-conc

    (defthm tree-list-listp-of-pdf-cst-font-conc
      (b* ((cstss (pdf-cst-font-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-font-conc-match

    (defthm pdf-cst-font-conc-match
      (implies (pdf-cst-matchp cst "font")
               (b* ((cstss (pdf-cst-font-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss
                      "start-dict name reference end-dict")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-font-conc-of-tree-fix-cst

    (defthm pdf-cst-font-conc-of-tree-fix-cst
      (equal (pdf-cst-font-conc (tree-fix cst))
             (pdf-cst-font-conc cst)))

    Theorem: pdf-cst-font-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-font-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-font-conc cst)
                      (pdf-cst-font-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-key-conc

    (defun pdf-cst-dict-key-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "dict-key")))
      (let ((__function__ 'pdf-cst-dict-key-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-key-conc

    (defthm tree-list-listp-of-pdf-cst-dict-key-conc
      (b* ((cstss (pdf-cst-dict-key-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-key-conc-match

    (defthm pdf-cst-dict-key-conc-match
      (implies
           (pdf-cst-matchp cst "dict-key")
           (b* ((cstss (pdf-cst-dict-key-conc cst)))
             (pdf-cst-list-list-conc-matchp cstss "backslash *char")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-key-conc-of-tree-fix-cst

    (defthm pdf-cst-dict-key-conc-of-tree-fix-cst
      (equal (pdf-cst-dict-key-conc (tree-fix cst))
             (pdf-cst-dict-key-conc cst)))

    Theorem: pdf-cst-dict-key-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-key-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-key-conc cst)
                      (pdf-cst-dict-key-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc1

    (defun pdf-cst-dict-value-conc1 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         1))))
      (let ((__function__ 'pdf-cst-dict-value-conc1))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-value-conc1

    (defthm tree-list-listp-of-pdf-cst-dict-value-conc1
      (b* ((cstss (pdf-cst-dict-value-conc1 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc1-match

    (defthm pdf-cst-dict-value-conc1-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           1))
               (b* ((cstss (pdf-cst-dict-value-conc1 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "boolean")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc1-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc1-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc1 (tree-fix cst))
             (pdf-cst-dict-value-conc1 cst)))

    Theorem: pdf-cst-dict-value-conc1-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc1-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc1 cst)
                      (pdf-cst-dict-value-conc1 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc2

    (defun pdf-cst-dict-value-conc2 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         2))))
      (let ((__function__ 'pdf-cst-dict-value-conc2))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-value-conc2

    (defthm tree-list-listp-of-pdf-cst-dict-value-conc2
      (b* ((cstss (pdf-cst-dict-value-conc2 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc2-match

    (defthm pdf-cst-dict-value-conc2-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           2))
               (b* ((cstss (pdf-cst-dict-value-conc2 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "number")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc2-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc2-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc2 (tree-fix cst))
             (pdf-cst-dict-value-conc2 cst)))

    Theorem: pdf-cst-dict-value-conc2-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc2-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc2 cst)
                      (pdf-cst-dict-value-conc2 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc3

    (defun pdf-cst-dict-value-conc3 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         3))))
      (let ((__function__ 'pdf-cst-dict-value-conc3))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-value-conc3

    (defthm tree-list-listp-of-pdf-cst-dict-value-conc3
      (b* ((cstss (pdf-cst-dict-value-conc3 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc3-match

    (defthm pdf-cst-dict-value-conc3-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           3))
               (b* ((cstss (pdf-cst-dict-value-conc3 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "name")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc3-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc3-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc3 (tree-fix cst))
             (pdf-cst-dict-value-conc3 cst)))

    Theorem: pdf-cst-dict-value-conc3-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc3-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc3 cst)
                      (pdf-cst-dict-value-conc3 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc4

    (defun pdf-cst-dict-value-conc4 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         4))))
      (let ((__function__ 'pdf-cst-dict-value-conc4))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-value-conc4

    (defthm tree-list-listp-of-pdf-cst-dict-value-conc4
      (b* ((cstss (pdf-cst-dict-value-conc4 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc4-match

    (defthm pdf-cst-dict-value-conc4-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           4))
               (b* ((cstss (pdf-cst-dict-value-conc4 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "array")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc4-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc4-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc4 (tree-fix cst))
             (pdf-cst-dict-value-conc4 cst)))

    Theorem: pdf-cst-dict-value-conc4-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc4-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc4 cst)
                      (pdf-cst-dict-value-conc4 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc5

    (defun pdf-cst-dict-value-conc5 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         5))))
      (let ((__function__ 'pdf-cst-dict-value-conc5))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-value-conc5

    (defthm tree-list-listp-of-pdf-cst-dict-value-conc5
      (b* ((cstss (pdf-cst-dict-value-conc5 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc5-match

    (defthm pdf-cst-dict-value-conc5-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           5))
               (b* ((cstss (pdf-cst-dict-value-conc5 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "dictionary")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc5-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc5-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc5 (tree-fix cst))
             (pdf-cst-dict-value-conc5 cst)))

    Theorem: pdf-cst-dict-value-conc5-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc5-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc5 cst)
                      (pdf-cst-dict-value-conc5 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc6

    (defun pdf-cst-dict-value-conc6 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         6))))
      (let ((__function__ 'pdf-cst-dict-value-conc6))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-value-conc6

    (defthm tree-list-listp-of-pdf-cst-dict-value-conc6
      (b* ((cstss (pdf-cst-dict-value-conc6 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc6-match

    (defthm pdf-cst-dict-value-conc6-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           6))
               (b* ((cstss (pdf-cst-dict-value-conc6 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "null")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc6-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc6-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc6 (tree-fix cst))
             (pdf-cst-dict-value-conc6 cst)))

    Theorem: pdf-cst-dict-value-conc6-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc6-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc6 cst)
                      (pdf-cst-dict-value-conc6 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc7

    (defun pdf-cst-dict-value-conc7 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         7))))
      (let ((__function__ 'pdf-cst-dict-value-conc7))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-value-conc7

    (defthm tree-list-listp-of-pdf-cst-dict-value-conc7
      (b* ((cstss (pdf-cst-dict-value-conc7 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc7-match

    (defthm pdf-cst-dict-value-conc7-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           7))
               (b* ((cstss (pdf-cst-dict-value-conc7 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "rectangle")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc7-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc7-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc7 (tree-fix cst))
             (pdf-cst-dict-value-conc7 cst)))

    Theorem: pdf-cst-dict-value-conc7-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc7-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc7 cst)
                      (pdf-cst-dict-value-conc7 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc8

    (defun pdf-cst-dict-value-conc8 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         8))))
      (let ((__function__ 'pdf-cst-dict-value-conc8))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-value-conc8

    (defthm tree-list-listp-of-pdf-cst-dict-value-conc8
      (b* ((cstss (pdf-cst-dict-value-conc8 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc8-match

    (defthm pdf-cst-dict-value-conc8-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           8))
               (b* ((cstss (pdf-cst-dict-value-conc8 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "reference")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc8-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc8-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc8 (tree-fix cst))
             (pdf-cst-dict-value-conc8 cst)))

    Theorem: pdf-cst-dict-value-conc8-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc8-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc8 cst)
                      (pdf-cst-dict-value-conc8 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc9

    (defun pdf-cst-dict-value-conc9 (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         9))))
      (let ((__function__ 'pdf-cst-dict-value-conc9))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-dict-value-conc9

    (defthm tree-list-listp-of-pdf-cst-dict-value-conc9
      (b* ((cstss (pdf-cst-dict-value-conc9 cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc9-match

    (defthm pdf-cst-dict-value-conc9-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           9))
               (b* ((cstss (pdf-cst-dict-value-conc9 cst)))
                 (pdf-cst-list-list-conc-matchp cstss "string")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc9-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc9-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc9 (tree-fix cst))
             (pdf-cst-dict-value-conc9 cst)))

    Theorem: pdf-cst-dict-value-conc9-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc9-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc9 cst)
                      (pdf-cst-dict-value-conc9 cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-start-dict-conc

    (defun pdf-cst-start-dict-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "start-dict")))
      (let ((__function__ 'pdf-cst-start-dict-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-start-dict-conc

    (defthm tree-list-listp-of-pdf-cst-start-dict-conc
      (b* ((cstss (pdf-cst-start-dict-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-start-dict-conc-match

    (defthm pdf-cst-start-dict-conc-match
      (implies (pdf-cst-matchp cst "start-dict")
               (b* ((cstss (pdf-cst-start-dict-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x3C.3C")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-start-dict-conc-of-tree-fix-cst

    (defthm pdf-cst-start-dict-conc-of-tree-fix-cst
      (equal (pdf-cst-start-dict-conc (tree-fix cst))
             (pdf-cst-start-dict-conc cst)))

    Theorem: pdf-cst-start-dict-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-start-dict-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-start-dict-conc cst)
                      (pdf-cst-start-dict-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-end-dict-conc

    (defun pdf-cst-end-dict-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "end-dict")))
      (let ((__function__ 'pdf-cst-end-dict-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-end-dict-conc

    (defthm tree-list-listp-of-pdf-cst-end-dict-conc
      (b* ((cstss (pdf-cst-end-dict-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-end-dict-conc-match

    (defthm pdf-cst-end-dict-conc-match
      (implies (pdf-cst-matchp cst "end-dict")
               (b* ((cstss (pdf-cst-end-dict-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x3E.3E")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-end-dict-conc-of-tree-fix-cst

    (defthm pdf-cst-end-dict-conc-of-tree-fix-cst
      (equal (pdf-cst-end-dict-conc (tree-fix cst))
             (pdf-cst-end-dict-conc cst)))

    Theorem: pdf-cst-end-dict-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-end-dict-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-end-dict-conc cst)
                      (pdf-cst-end-dict-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-ws-conc

    (defun pdf-cst-ws-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "ws")))
      (let ((__function__ 'pdf-cst-ws-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-ws-conc

    (defthm tree-list-listp-of-pdf-cst-ws-conc
      (b* ((cstss (pdf-cst-ws-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-ws-conc-match

    (defthm pdf-cst-ws-conc-match
      (implies (pdf-cst-matchp cst "ws")
               (b* ((cstss (pdf-cst-ws-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss
                      "*( %x0 / %x9 / %xA / %xC / %xD / %x20 )")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-ws-conc-of-tree-fix-cst

    (defthm pdf-cst-ws-conc-of-tree-fix-cst
      (equal (pdf-cst-ws-conc (tree-fix cst))
             (pdf-cst-ws-conc cst)))

    Theorem: pdf-cst-ws-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-ws-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-ws-conc cst)
                      (pdf-cst-ws-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-digit1-9-conc

    (defun pdf-cst-digit1-9-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "digit1-9")))
      (let ((__function__ 'pdf-cst-digit1-9-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-digit1-9-conc

    (defthm tree-list-listp-of-pdf-cst-digit1-9-conc
      (b* ((cstss (pdf-cst-digit1-9-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-digit1-9-conc-match

    (defthm pdf-cst-digit1-9-conc-match
      (implies (pdf-cst-matchp cst "digit1-9")
               (b* ((cstss (pdf-cst-digit1-9-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x31-39")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-digit1-9-conc-of-tree-fix-cst

    (defthm pdf-cst-digit1-9-conc-of-tree-fix-cst
      (equal (pdf-cst-digit1-9-conc (tree-fix cst))
             (pdf-cst-digit1-9-conc cst)))

    Theorem: pdf-cst-digit1-9-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-digit1-9-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-digit1-9-conc cst)
                      (pdf-cst-digit1-9-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-digit-conc

    (defun pdf-cst-digit-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "digit")))
      (let ((__function__ 'pdf-cst-digit-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-digit-conc

    (defthm tree-list-listp-of-pdf-cst-digit-conc
      (b* ((cstss (pdf-cst-digit-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-digit-conc-match

    (defthm pdf-cst-digit-conc-match
      (implies (pdf-cst-matchp cst "digit")
               (b* ((cstss (pdf-cst-digit-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x30-39")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-digit-conc-of-tree-fix-cst

    (defthm pdf-cst-digit-conc-of-tree-fix-cst
      (equal (pdf-cst-digit-conc (tree-fix cst))
             (pdf-cst-digit-conc cst)))

    Theorem: pdf-cst-digit-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-digit-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-digit-conc cst)
                      (pdf-cst-digit-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-array-conc

    (defun pdf-cst-array-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "array")))
      (let ((__function__ 'pdf-cst-array-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-array-conc

    (defthm tree-list-listp-of-pdf-cst-array-conc
      (b* ((cstss (pdf-cst-array-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-array-conc-match

    (defthm pdf-cst-array-conc-match
      (implies (pdf-cst-matchp cst "array")
               (b* ((cstss (pdf-cst-array-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss
                      "left-bracket *char right-bracket")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-array-conc-of-tree-fix-cst

    (defthm pdf-cst-array-conc-of-tree-fix-cst
      (equal (pdf-cst-array-conc (tree-fix cst))
             (pdf-cst-array-conc cst)))

    Theorem: pdf-cst-array-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-array-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-array-conc cst)
                      (pdf-cst-array-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-reference-array-conc

    (defun pdf-cst-reference-array-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "reference-array")))
      (let ((__function__ 'pdf-cst-reference-array-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-reference-array-conc

    (defthm tree-list-listp-of-pdf-cst-reference-array-conc
      (b* ((cstss (pdf-cst-reference-array-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-reference-array-conc-match

    (defthm pdf-cst-reference-array-conc-match
      (implies (pdf-cst-matchp cst "reference-array")
               (b* ((cstss (pdf-cst-reference-array-conc cst)))
                 (pdf-cst-list-list-conc-matchp
                      cstss
                      "left-bracket *reference right-bracket")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-reference-array-conc-of-tree-fix-cst

    (defthm pdf-cst-reference-array-conc-of-tree-fix-cst
      (equal (pdf-cst-reference-array-conc (tree-fix cst))
             (pdf-cst-reference-array-conc cst)))

    Theorem: pdf-cst-reference-array-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-reference-array-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-reference-array-conc cst)
                      (pdf-cst-reference-array-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-reference-conc

    (defun pdf-cst-reference-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "reference")))
      (let ((__function__ 'pdf-cst-reference-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-reference-conc

    (defthm tree-list-listp-of-pdf-cst-reference-conc
      (b* ((cstss (pdf-cst-reference-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-reference-conc-match

    (defthm pdf-cst-reference-conc-match
     (implies
          (pdf-cst-matchp cst "reference")
          (b* ((cstss (pdf-cst-reference-conc cst)))
            (pdf-cst-list-list-conc-matchp cstss "int %x20 zero %x52")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-reference-conc-of-tree-fix-cst

    (defthm pdf-cst-reference-conc-of-tree-fix-cst
      (equal (pdf-cst-reference-conc (tree-fix cst))
             (pdf-cst-reference-conc cst)))

    Theorem: pdf-cst-reference-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-reference-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-reference-conc cst)
                      (pdf-cst-reference-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-rectangle-conc

    (defun pdf-cst-rectangle-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "rectangle")))
      (let ((__function__ 'pdf-cst-rectangle-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-rectangle-conc

    (defthm tree-list-listp-of-pdf-cst-rectangle-conc
      (b* ((cstss (pdf-cst-rectangle-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-rectangle-conc-match

    (defthm pdf-cst-rectangle-conc-match
     (implies
      (pdf-cst-matchp cst "rectangle")
      (b* ((cstss (pdf-cst-rectangle-conc cst)))
        (pdf-cst-list-list-conc-matchp
             cstss
             "left-bracket number number number number right-bracket")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-rectangle-conc-of-tree-fix-cst

    (defthm pdf-cst-rectangle-conc-of-tree-fix-cst
      (equal (pdf-cst-rectangle-conc (tree-fix cst))
             (pdf-cst-rectangle-conc cst)))

    Theorem: pdf-cst-rectangle-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-rectangle-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-rectangle-conc cst)
                      (pdf-cst-rectangle-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-left-bracket-conc

    (defun pdf-cst-left-bracket-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "left-bracket")))
      (let ((__function__ 'pdf-cst-left-bracket-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-left-bracket-conc

    (defthm tree-list-listp-of-pdf-cst-left-bracket-conc
      (b* ((cstss (pdf-cst-left-bracket-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-left-bracket-conc-match

    (defthm pdf-cst-left-bracket-conc-match
      (implies (pdf-cst-matchp cst "left-bracket")
               (b* ((cstss (pdf-cst-left-bracket-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x5B")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-left-bracket-conc-of-tree-fix-cst

    (defthm pdf-cst-left-bracket-conc-of-tree-fix-cst
      (equal (pdf-cst-left-bracket-conc (tree-fix cst))
             (pdf-cst-left-bracket-conc cst)))

    Theorem: pdf-cst-left-bracket-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-left-bracket-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-left-bracket-conc cst)
                      (pdf-cst-left-bracket-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-right-bracket-conc

    (defun pdf-cst-right-bracket-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "right-bracket")))
      (let ((__function__ 'pdf-cst-right-bracket-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-right-bracket-conc

    (defthm tree-list-listp-of-pdf-cst-right-bracket-conc
      (b* ((cstss (pdf-cst-right-bracket-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-right-bracket-conc-match

    (defthm pdf-cst-right-bracket-conc-match
      (implies (pdf-cst-matchp cst "right-bracket")
               (b* ((cstss (pdf-cst-right-bracket-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x5D")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-right-bracket-conc-of-tree-fix-cst

    (defthm pdf-cst-right-bracket-conc-of-tree-fix-cst
      (equal (pdf-cst-right-bracket-conc (tree-fix cst))
             (pdf-cst-right-bracket-conc cst)))

    Theorem: pdf-cst-right-bracket-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-right-bracket-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-right-bracket-conc cst)
                      (pdf-cst-right-bracket-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-null-conc

    (defun pdf-cst-null-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "null")))
      (let ((__function__ 'pdf-cst-null-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-null-conc

    (defthm tree-list-listp-of-pdf-cst-null-conc
      (b* ((cstss (pdf-cst-null-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-null-conc-match

    (defthm pdf-cst-null-conc-match
      (implies (pdf-cst-matchp cst "null")
               (b* ((cstss (pdf-cst-null-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%s\"null\"")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-null-conc-of-tree-fix-cst

    (defthm pdf-cst-null-conc-of-tree-fix-cst
      (equal (pdf-cst-null-conc (tree-fix cst))
             (pdf-cst-null-conc cst)))

    Theorem: pdf-cst-null-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-null-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-null-conc cst)
                      (pdf-cst-null-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-name-conc

    (defun pdf-cst-name-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "name")))
      (let ((__function__ 'pdf-cst-name-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-name-conc

    (defthm tree-list-listp-of-pdf-cst-name-conc
      (b* ((cstss (pdf-cst-name-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-name-conc-match

    (defthm pdf-cst-name-conc-match
      (implies
           (pdf-cst-matchp cst "name")
           (b* ((cstss (pdf-cst-name-conc cst)))
             (pdf-cst-list-list-conc-matchp cstss "slash name-char")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-name-conc-of-tree-fix-cst

    (defthm pdf-cst-name-conc-of-tree-fix-cst
      (equal (pdf-cst-name-conc (tree-fix cst))
             (pdf-cst-name-conc cst)))

    Theorem: pdf-cst-name-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-name-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-name-conc cst)
                      (pdf-cst-name-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-name-char-conc

    (defun pdf-cst-name-char-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "name-char")))
      (let ((__function__ 'pdf-cst-name-char-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-name-char-conc

    (defthm tree-list-listp-of-pdf-cst-name-char-conc
      (b* ((cstss (pdf-cst-name-char-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-name-char-conc-match

    (defthm pdf-cst-name-char-conc-match
      (implies (pdf-cst-matchp cst "name-char")
               (b* ((cstss (pdf-cst-name-char-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x20-7E")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-name-char-conc-of-tree-fix-cst

    (defthm pdf-cst-name-char-conc-of-tree-fix-cst
      (equal (pdf-cst-name-char-conc (tree-fix cst))
             (pdf-cst-name-char-conc cst)))

    Theorem: pdf-cst-name-char-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-name-char-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-name-char-conc cst)
                      (pdf-cst-name-char-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-real-conc

    (defun pdf-cst-real-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "real")))
      (let ((__function__ 'pdf-cst-real-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-real-conc

    (defthm tree-list-listp-of-pdf-cst-real-conc
      (b* ((cstss (pdf-cst-real-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-real-conc-match

    (defthm pdf-cst-real-conc-match
     (implies (pdf-cst-matchp cst "real")
              (b* ((cstss (pdf-cst-real-conc cst)))
                (pdf-cst-list-list-conc-matchp cstss "int period int")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-real-conc-of-tree-fix-cst

    (defthm pdf-cst-real-conc-of-tree-fix-cst
      (equal (pdf-cst-real-conc (tree-fix cst))
             (pdf-cst-real-conc cst)))

    Theorem: pdf-cst-real-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-real-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-real-conc cst)
                      (pdf-cst-real-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-plus-conc

    (defun pdf-cst-plus-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "plus")))
      (let ((__function__ 'pdf-cst-plus-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-plus-conc

    (defthm tree-list-listp-of-pdf-cst-plus-conc
      (b* ((cstss (pdf-cst-plus-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-plus-conc-match

    (defthm pdf-cst-plus-conc-match
      (implies (pdf-cst-matchp cst "plus")
               (b* ((cstss (pdf-cst-plus-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x2B")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-plus-conc-of-tree-fix-cst

    (defthm pdf-cst-plus-conc-of-tree-fix-cst
      (equal (pdf-cst-plus-conc (tree-fix cst))
             (pdf-cst-plus-conc cst)))

    Theorem: pdf-cst-plus-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-plus-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-plus-conc cst)
                      (pdf-cst-plus-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-minus-conc

    (defun pdf-cst-minus-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "minus")))
      (let ((__function__ 'pdf-cst-minus-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-minus-conc

    (defthm tree-list-listp-of-pdf-cst-minus-conc
      (b* ((cstss (pdf-cst-minus-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-minus-conc-match

    (defthm pdf-cst-minus-conc-match
      (implies (pdf-cst-matchp cst "minus")
               (b* ((cstss (pdf-cst-minus-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x2D")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-minus-conc-of-tree-fix-cst

    (defthm pdf-cst-minus-conc-of-tree-fix-cst
      (equal (pdf-cst-minus-conc (tree-fix cst))
             (pdf-cst-minus-conc cst)))

    Theorem: pdf-cst-minus-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-minus-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-minus-conc cst)
                      (pdf-cst-minus-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-slash-conc

    (defun pdf-cst-slash-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "slash")))
      (let ((__function__ 'pdf-cst-slash-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-slash-conc

    (defthm tree-list-listp-of-pdf-cst-slash-conc
      (b* ((cstss (pdf-cst-slash-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-slash-conc-match

    (defthm pdf-cst-slash-conc-match
      (implies (pdf-cst-matchp cst "slash")
               (b* ((cstss (pdf-cst-slash-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x2F")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-slash-conc-of-tree-fix-cst

    (defthm pdf-cst-slash-conc-of-tree-fix-cst
      (equal (pdf-cst-slash-conc (tree-fix cst))
             (pdf-cst-slash-conc cst)))

    Theorem: pdf-cst-slash-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-slash-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-slash-conc cst)
                      (pdf-cst-slash-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-backslash-conc

    (defun pdf-cst-backslash-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "backslash")))
      (let ((__function__ 'pdf-cst-backslash-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-backslash-conc

    (defthm tree-list-listp-of-pdf-cst-backslash-conc
      (b* ((cstss (pdf-cst-backslash-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-backslash-conc-match

    (defthm pdf-cst-backslash-conc-match
      (implies (pdf-cst-matchp cst "backslash")
               (b* ((cstss (pdf-cst-backslash-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x5C")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-backslash-conc-of-tree-fix-cst

    (defthm pdf-cst-backslash-conc-of-tree-fix-cst
      (equal (pdf-cst-backslash-conc (tree-fix cst))
             (pdf-cst-backslash-conc cst)))

    Theorem: pdf-cst-backslash-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-backslash-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-backslash-conc cst)
                      (pdf-cst-backslash-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-zero-conc

    (defun pdf-cst-zero-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "zero")))
      (let ((__function__ 'pdf-cst-zero-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-zero-conc

    (defthm tree-list-listp-of-pdf-cst-zero-conc
      (b* ((cstss (pdf-cst-zero-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-zero-conc-match

    (defthm pdf-cst-zero-conc-match
      (implies (pdf-cst-matchp cst "zero")
               (b* ((cstss (pdf-cst-zero-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x30")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-zero-conc-of-tree-fix-cst

    (defthm pdf-cst-zero-conc-of-tree-fix-cst
      (equal (pdf-cst-zero-conc (tree-fix cst))
             (pdf-cst-zero-conc cst)))

    Theorem: pdf-cst-zero-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-zero-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-zero-conc cst)
                      (pdf-cst-zero-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-string-conc

    (defun pdf-cst-string-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "string")))
      (let ((__function__ 'pdf-cst-string-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-string-conc

    (defthm tree-list-listp-of-pdf-cst-string-conc
      (b* ((cstss (pdf-cst-string-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-string-conc-match

    (defthm pdf-cst-string-conc-match
      (implies (pdf-cst-matchp cst "string")
               (b* ((cstss (pdf-cst-string-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "*char")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-string-conc-of-tree-fix-cst

    (defthm pdf-cst-string-conc-of-tree-fix-cst
      (equal (pdf-cst-string-conc (tree-fix cst))
             (pdf-cst-string-conc cst)))

    Theorem: pdf-cst-string-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-string-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-string-conc cst)
                      (pdf-cst-string-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-period-conc

    (defun pdf-cst-period-conc (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "period")))
      (let ((__function__ 'pdf-cst-period-conc))
        (declare (ignorable __function__))
        (tree-nonleaf->branches cst)))

    Theorem: tree-list-listp-of-pdf-cst-period-conc

    (defthm tree-list-listp-of-pdf-cst-period-conc
      (b* ((cstss (pdf-cst-period-conc cst)))
        (tree-list-listp cstss))
      :rule-classes :rewrite)

    Theorem: pdf-cst-period-conc-match

    (defthm pdf-cst-period-conc-match
      (implies (pdf-cst-matchp cst "period")
               (b* ((cstss (pdf-cst-period-conc cst)))
                 (pdf-cst-list-list-conc-matchp cstss "%x2E")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-period-conc-of-tree-fix-cst

    (defthm pdf-cst-period-conc-of-tree-fix-cst
      (equal (pdf-cst-period-conc (tree-fix cst))
             (pdf-cst-period-conc cst)))

    Theorem: pdf-cst-period-conc-tree-equiv-congruence-on-cst

    (defthm pdf-cst-period-conc-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-period-conc cst)
                      (pdf-cst-period-conc cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-pdf-marker-conc-rep

    (defun pdf-cst-pdf-marker-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "pdf-marker")))
      (let ((__function__ 'pdf-cst-pdf-marker-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-pdf-marker-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-pdf-marker-conc-rep

    (defthm tree-listp-of-pdf-cst-pdf-marker-conc-rep
      (b* ((csts (pdf-cst-pdf-marker-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-pdf-marker-conc-rep-match

    (defthm pdf-cst-pdf-marker-conc-rep-match
      (implies (pdf-cst-matchp cst "pdf-marker")
               (b* ((csts (pdf-cst-pdf-marker-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x25.50.44.46.45")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-pdf-marker-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-pdf-marker-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-pdf-marker-conc-rep (tree-fix cst))
             (pdf-cst-pdf-marker-conc-rep cst)))

    Theorem: pdf-cst-pdf-marker-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-pdf-marker-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-pdf-marker-conc-rep cst)
                      (pdf-cst-pdf-marker-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-obj-marker-conc-rep

    (defun pdf-cst-obj-marker-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "obj-marker")))
      (let ((__function__ 'pdf-cst-obj-marker-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-obj-marker-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-obj-marker-conc-rep

    (defthm tree-listp-of-pdf-cst-obj-marker-conc-rep
      (b* ((csts (pdf-cst-obj-marker-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-obj-marker-conc-rep-match

    (defthm pdf-cst-obj-marker-conc-rep-match
      (implies (pdf-cst-matchp cst "obj-marker")
               (b* ((csts (pdf-cst-obj-marker-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x6F.62.6A")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-obj-marker-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-obj-marker-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-obj-marker-conc-rep (tree-fix cst))
             (pdf-cst-obj-marker-conc-rep cst)))

    Theorem: pdf-cst-obj-marker-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-obj-marker-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-obj-marker-conc-rep cst)
                      (pdf-cst-obj-marker-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-endobj-marker-conc-rep

    (defun pdf-cst-endobj-marker-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "endobj-marker")))
      (let ((__function__ 'pdf-cst-endobj-marker-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-endobj-marker-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-endobj-marker-conc-rep

    (defthm tree-listp-of-pdf-cst-endobj-marker-conc-rep
      (b* ((csts (pdf-cst-endobj-marker-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-endobj-marker-conc-rep-match

    (defthm pdf-cst-endobj-marker-conc-rep-match
      (implies (pdf-cst-matchp cst "endobj-marker")
               (b* ((csts (pdf-cst-endobj-marker-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x65.6E.64.6F.62.6A")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-endobj-marker-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-endobj-marker-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-endobj-marker-conc-rep (tree-fix cst))
             (pdf-cst-endobj-marker-conc-rep cst)))

    Theorem: pdf-cst-endobj-marker-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-endobj-marker-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-endobj-marker-conc-rep cst)
                      (pdf-cst-endobj-marker-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-stream-marker-conc-rep

    (defun pdf-cst-stream-marker-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "stream-marker")))
      (let ((__function__ 'pdf-cst-stream-marker-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-stream-marker-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-stream-marker-conc-rep

    (defthm tree-listp-of-pdf-cst-stream-marker-conc-rep
      (b* ((csts (pdf-cst-stream-marker-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-stream-marker-conc-rep-match

    (defthm pdf-cst-stream-marker-conc-rep-match
      (implies (pdf-cst-matchp cst "stream-marker")
               (b* ((csts (pdf-cst-stream-marker-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x73.74.72.65.61.6D")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-stream-marker-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-stream-marker-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-stream-marker-conc-rep (tree-fix cst))
             (pdf-cst-stream-marker-conc-rep cst)))

    Theorem: pdf-cst-stream-marker-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-stream-marker-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-stream-marker-conc-rep cst)
                      (pdf-cst-stream-marker-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-endstream-marker-conc-rep

    (defun pdf-cst-endstream-marker-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "endstream-marker")))
      (let ((__function__ 'pdf-cst-endstream-marker-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0
                            (pdf-cst-endstream-marker-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-endstream-marker-conc-rep

    (defthm tree-listp-of-pdf-cst-endstream-marker-conc-rep
      (b* ((csts (pdf-cst-endstream-marker-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-endstream-marker-conc-rep-match

    (defthm pdf-cst-endstream-marker-conc-rep-match
     (implies
       (pdf-cst-matchp cst "endstream-marker")
       (b* ((csts (pdf-cst-endstream-marker-conc-rep cst)))
         (pdf-cst-list-rep-matchp csts "%x65.6E.64.73.74.72.65.61.6D")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-endstream-marker-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-endstream-marker-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-endstream-marker-conc-rep (tree-fix cst))
             (pdf-cst-endstream-marker-conc-rep cst)))

    Theorem: pdf-cst-endstream-marker-conc-rep-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-endstream-marker-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-endstream-marker-conc-rep cst)
                      (pdf-cst-endstream-marker-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-xref-marker-conc-rep

    (defun pdf-cst-xref-marker-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "xref-marker")))
      (let ((__function__ 'pdf-cst-xref-marker-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-xref-marker-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-xref-marker-conc-rep

    (defthm tree-listp-of-pdf-cst-xref-marker-conc-rep
      (b* ((csts (pdf-cst-xref-marker-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-xref-marker-conc-rep-match

    (defthm pdf-cst-xref-marker-conc-rep-match
      (implies (pdf-cst-matchp cst "xref-marker")
               (b* ((csts (pdf-cst-xref-marker-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x78.72.65.66")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-xref-marker-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-xref-marker-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-xref-marker-conc-rep (tree-fix cst))
             (pdf-cst-xref-marker-conc-rep cst)))

    Theorem: pdf-cst-xref-marker-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-xref-marker-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-xref-marker-conc-rep cst)
                      (pdf-cst-xref-marker-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-startxref-marker-conc-rep

    (defun pdf-cst-startxref-marker-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "startxref-marker")))
      (let ((__function__ 'pdf-cst-startxref-marker-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0
                            (pdf-cst-startxref-marker-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-startxref-marker-conc-rep

    (defthm tree-listp-of-pdf-cst-startxref-marker-conc-rep
      (b* ((csts (pdf-cst-startxref-marker-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-startxref-marker-conc-rep-match

    (defthm pdf-cst-startxref-marker-conc-rep-match
     (implies
       (pdf-cst-matchp cst "startxref-marker")
       (b* ((csts (pdf-cst-startxref-marker-conc-rep cst)))
         (pdf-cst-list-rep-matchp csts "%x73.74.61.72.74.78.72.65.66")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-startxref-marker-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-startxref-marker-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-startxref-marker-conc-rep (tree-fix cst))
             (pdf-cst-startxref-marker-conc-rep cst)))

    Theorem: pdf-cst-startxref-marker-conc-rep-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-startxref-marker-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-startxref-marker-conc-rep cst)
                      (pdf-cst-startxref-marker-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-eof-marker-conc-rep

    (defun pdf-cst-eof-marker-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "eof-marker")))
      (let ((__function__ 'pdf-cst-eof-marker-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-eof-marker-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-eof-marker-conc-rep

    (defthm tree-listp-of-pdf-cst-eof-marker-conc-rep
      (b* ((csts (pdf-cst-eof-marker-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-eof-marker-conc-rep-match

    (defthm pdf-cst-eof-marker-conc-rep-match
      (implies (pdf-cst-matchp cst "eof-marker")
               (b* ((csts (pdf-cst-eof-marker-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x25.25.45.4F.46")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-eof-marker-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-eof-marker-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-eof-marker-conc-rep (tree-fix cst))
             (pdf-cst-eof-marker-conc-rep cst)))

    Theorem: pdf-cst-eof-marker-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-eof-marker-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-eof-marker-conc-rep cst)
                      (pdf-cst-eof-marker-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-trailer-marker-conc-rep

    (defun pdf-cst-trailer-marker-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "trailer-marker")))
      (let ((__function__ 'pdf-cst-trailer-marker-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-trailer-marker-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-trailer-marker-conc-rep

    (defthm tree-listp-of-pdf-cst-trailer-marker-conc-rep
      (b* ((csts (pdf-cst-trailer-marker-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-trailer-marker-conc-rep-match

    (defthm pdf-cst-trailer-marker-conc-rep-match
      (implies
           (pdf-cst-matchp cst "trailer-marker")
           (b* ((csts (pdf-cst-trailer-marker-conc-rep cst)))
             (pdf-cst-list-rep-matchp csts "%x74.72.61.69.6C.65.72")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-trailer-marker-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-trailer-marker-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-trailer-marker-conc-rep (tree-fix cst))
             (pdf-cst-trailer-marker-conc-rep cst)))

    Theorem: pdf-cst-trailer-marker-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-trailer-marker-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-trailer-marker-conc-rep cst)
                      (pdf-cst-trailer-marker-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc1-rep

    (defun pdf-cst-dict-entry-conc1-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         1))))
      (let ((__function__ 'pdf-cst-dict-entry-conc1-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-entry-conc1 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-entry-conc1-rep

    (defthm tree-listp-of-pdf-cst-dict-entry-conc1-rep
      (b* ((csts (pdf-cst-dict-entry-conc1-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc1-rep-match

    (defthm pdf-cst-dict-entry-conc1-rep-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           1))
               (b* ((csts (pdf-cst-dict-entry-conc1-rep cst)))
                 (pdf-cst-list-rep-matchp csts "type-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc1-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc1-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc1-rep (tree-fix cst))
             (pdf-cst-dict-entry-conc1-rep cst)))

    Theorem: pdf-cst-dict-entry-conc1-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc1-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc1-rep cst)
                      (pdf-cst-dict-entry-conc1-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc2-rep

    (defun pdf-cst-dict-entry-conc2-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         2))))
      (let ((__function__ 'pdf-cst-dict-entry-conc2-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-entry-conc2 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-entry-conc2-rep

    (defthm tree-listp-of-pdf-cst-dict-entry-conc2-rep
      (b* ((csts (pdf-cst-dict-entry-conc2-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc2-rep-match

    (defthm pdf-cst-dict-entry-conc2-rep-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           2))
               (b* ((csts (pdf-cst-dict-entry-conc2-rep cst)))
                 (pdf-cst-list-rep-matchp csts "reference-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc2-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc2-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc2-rep (tree-fix cst))
             (pdf-cst-dict-entry-conc2-rep cst)))

    Theorem: pdf-cst-dict-entry-conc2-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc2-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc2-rep cst)
                      (pdf-cst-dict-entry-conc2-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc3-rep

    (defun pdf-cst-dict-entry-conc3-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         3))))
      (let ((__function__ 'pdf-cst-dict-entry-conc3-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-entry-conc3 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-entry-conc3-rep

    (defthm tree-listp-of-pdf-cst-dict-entry-conc3-rep
      (b* ((csts (pdf-cst-dict-entry-conc3-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc3-rep-match

    (defthm pdf-cst-dict-entry-conc3-rep-match
     (implies (and (pdf-cst-matchp cst "dict-entry")
                   (equal (pdf-cst-dict-entry-conc? cst)
                          3))
              (b* ((csts (pdf-cst-dict-entry-conc3-rep cst)))
                (pdf-cst-list-rep-matchp csts "reference-array-entry")))
     :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc3-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc3-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc3-rep (tree-fix cst))
             (pdf-cst-dict-entry-conc3-rep cst)))

    Theorem: pdf-cst-dict-entry-conc3-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc3-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc3-rep cst)
                      (pdf-cst-dict-entry-conc3-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc4-rep

    (defun pdf-cst-dict-entry-conc4-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         4))))
      (let ((__function__ 'pdf-cst-dict-entry-conc4-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-entry-conc4 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-entry-conc4-rep

    (defthm tree-listp-of-pdf-cst-dict-entry-conc4-rep
      (b* ((csts (pdf-cst-dict-entry-conc4-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc4-rep-match

    (defthm pdf-cst-dict-entry-conc4-rep-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           4))
               (b* ((csts (pdf-cst-dict-entry-conc4-rep cst)))
                 (pdf-cst-list-rep-matchp csts "rectangle-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc4-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc4-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc4-rep (tree-fix cst))
             (pdf-cst-dict-entry-conc4-rep cst)))

    Theorem: pdf-cst-dict-entry-conc4-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc4-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc4-rep cst)
                      (pdf-cst-dict-entry-conc4-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc5-rep

    (defun pdf-cst-dict-entry-conc5-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         5))))
      (let ((__function__ 'pdf-cst-dict-entry-conc5-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-entry-conc5 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-entry-conc5-rep

    (defthm tree-listp-of-pdf-cst-dict-entry-conc5-rep
      (b* ((csts (pdf-cst-dict-entry-conc5-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc5-rep-match

    (defthm pdf-cst-dict-entry-conc5-rep-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           5))
               (b* ((csts (pdf-cst-dict-entry-conc5-rep cst)))
                 (pdf-cst-list-rep-matchp csts "number-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc5-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc5-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc5-rep (tree-fix cst))
             (pdf-cst-dict-entry-conc5-rep cst)))

    Theorem: pdf-cst-dict-entry-conc5-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc5-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc5-rep cst)
                      (pdf-cst-dict-entry-conc5-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc6-rep

    (defun pdf-cst-dict-entry-conc6-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         6))))
      (let ((__function__ 'pdf-cst-dict-entry-conc6-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-entry-conc6 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-entry-conc6-rep

    (defthm tree-listp-of-pdf-cst-dict-entry-conc6-rep
      (b* ((csts (pdf-cst-dict-entry-conc6-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc6-rep-match

    (defthm pdf-cst-dict-entry-conc6-rep-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           6))
               (b* ((csts (pdf-cst-dict-entry-conc6-rep cst)))
                 (pdf-cst-list-rep-matchp csts "name-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc6-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc6-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc6-rep (tree-fix cst))
             (pdf-cst-dict-entry-conc6-rep cst)))

    Theorem: pdf-cst-dict-entry-conc6-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc6-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc6-rep cst)
                      (pdf-cst-dict-entry-conc6-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc7-rep

    (defun pdf-cst-dict-entry-conc7-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         7))))
      (let ((__function__ 'pdf-cst-dict-entry-conc7-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-entry-conc7 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-entry-conc7-rep

    (defthm tree-listp-of-pdf-cst-dict-entry-conc7-rep
      (b* ((csts (pdf-cst-dict-entry-conc7-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc7-rep-match

    (defthm pdf-cst-dict-entry-conc7-rep-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           7))
               (b* ((csts (pdf-cst-dict-entry-conc7-rep cst)))
                 (pdf-cst-list-rep-matchp csts "font-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc7-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc7-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc7-rep (tree-fix cst))
             (pdf-cst-dict-entry-conc7-rep cst)))

    Theorem: pdf-cst-dict-entry-conc7-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc7-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc7-rep cst)
                      (pdf-cst-dict-entry-conc7-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc8-rep

    (defun pdf-cst-dict-entry-conc8-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         8))))
      (let ((__function__ 'pdf-cst-dict-entry-conc8-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-entry-conc8 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-entry-conc8-rep

    (defthm tree-listp-of-pdf-cst-dict-entry-conc8-rep
      (b* ((csts (pdf-cst-dict-entry-conc8-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc8-rep-match

    (defthm pdf-cst-dict-entry-conc8-rep-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           8))
               (b* ((csts (pdf-cst-dict-entry-conc8-rep cst)))
                 (pdf-cst-list-rep-matchp csts "default-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc8-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc8-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc8-rep (tree-fix cst))
             (pdf-cst-dict-entry-conc8-rep cst)))

    Theorem: pdf-cst-dict-entry-conc8-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-entry-conc8-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc8-rep cst)
                      (pdf-cst-dict-entry-conc8-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc1-rep

    (defun pdf-cst-dict-value-conc1-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         1))))
      (let ((__function__ 'pdf-cst-dict-value-conc1-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-value-conc1 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-value-conc1-rep

    (defthm tree-listp-of-pdf-cst-dict-value-conc1-rep
      (b* ((csts (pdf-cst-dict-value-conc1-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc1-rep-match

    (defthm pdf-cst-dict-value-conc1-rep-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           1))
               (b* ((csts (pdf-cst-dict-value-conc1-rep cst)))
                 (pdf-cst-list-rep-matchp csts "boolean")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc1-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc1-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc1-rep (tree-fix cst))
             (pdf-cst-dict-value-conc1-rep cst)))

    Theorem: pdf-cst-dict-value-conc1-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc1-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc1-rep cst)
                      (pdf-cst-dict-value-conc1-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc2-rep

    (defun pdf-cst-dict-value-conc2-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         2))))
      (let ((__function__ 'pdf-cst-dict-value-conc2-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-value-conc2 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-value-conc2-rep

    (defthm tree-listp-of-pdf-cst-dict-value-conc2-rep
      (b* ((csts (pdf-cst-dict-value-conc2-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc2-rep-match

    (defthm pdf-cst-dict-value-conc2-rep-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           2))
               (b* ((csts (pdf-cst-dict-value-conc2-rep cst)))
                 (pdf-cst-list-rep-matchp csts "number")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc2-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc2-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc2-rep (tree-fix cst))
             (pdf-cst-dict-value-conc2-rep cst)))

    Theorem: pdf-cst-dict-value-conc2-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc2-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc2-rep cst)
                      (pdf-cst-dict-value-conc2-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc3-rep

    (defun pdf-cst-dict-value-conc3-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         3))))
      (let ((__function__ 'pdf-cst-dict-value-conc3-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-value-conc3 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-value-conc3-rep

    (defthm tree-listp-of-pdf-cst-dict-value-conc3-rep
      (b* ((csts (pdf-cst-dict-value-conc3-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc3-rep-match

    (defthm pdf-cst-dict-value-conc3-rep-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           3))
               (b* ((csts (pdf-cst-dict-value-conc3-rep cst)))
                 (pdf-cst-list-rep-matchp csts "name")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc3-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc3-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc3-rep (tree-fix cst))
             (pdf-cst-dict-value-conc3-rep cst)))

    Theorem: pdf-cst-dict-value-conc3-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc3-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc3-rep cst)
                      (pdf-cst-dict-value-conc3-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc4-rep

    (defun pdf-cst-dict-value-conc4-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         4))))
      (let ((__function__ 'pdf-cst-dict-value-conc4-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-value-conc4 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-value-conc4-rep

    (defthm tree-listp-of-pdf-cst-dict-value-conc4-rep
      (b* ((csts (pdf-cst-dict-value-conc4-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc4-rep-match

    (defthm pdf-cst-dict-value-conc4-rep-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           4))
               (b* ((csts (pdf-cst-dict-value-conc4-rep cst)))
                 (pdf-cst-list-rep-matchp csts "array")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc4-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc4-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc4-rep (tree-fix cst))
             (pdf-cst-dict-value-conc4-rep cst)))

    Theorem: pdf-cst-dict-value-conc4-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc4-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc4-rep cst)
                      (pdf-cst-dict-value-conc4-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc5-rep

    (defun pdf-cst-dict-value-conc5-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         5))))
      (let ((__function__ 'pdf-cst-dict-value-conc5-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-value-conc5 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-value-conc5-rep

    (defthm tree-listp-of-pdf-cst-dict-value-conc5-rep
      (b* ((csts (pdf-cst-dict-value-conc5-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc5-rep-match

    (defthm pdf-cst-dict-value-conc5-rep-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           5))
               (b* ((csts (pdf-cst-dict-value-conc5-rep cst)))
                 (pdf-cst-list-rep-matchp csts "dictionary")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc5-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc5-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc5-rep (tree-fix cst))
             (pdf-cst-dict-value-conc5-rep cst)))

    Theorem: pdf-cst-dict-value-conc5-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc5-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc5-rep cst)
                      (pdf-cst-dict-value-conc5-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc6-rep

    (defun pdf-cst-dict-value-conc6-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         6))))
      (let ((__function__ 'pdf-cst-dict-value-conc6-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-value-conc6 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-value-conc6-rep

    (defthm tree-listp-of-pdf-cst-dict-value-conc6-rep
      (b* ((csts (pdf-cst-dict-value-conc6-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc6-rep-match

    (defthm pdf-cst-dict-value-conc6-rep-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           6))
               (b* ((csts (pdf-cst-dict-value-conc6-rep cst)))
                 (pdf-cst-list-rep-matchp csts "null")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc6-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc6-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc6-rep (tree-fix cst))
             (pdf-cst-dict-value-conc6-rep cst)))

    Theorem: pdf-cst-dict-value-conc6-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc6-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc6-rep cst)
                      (pdf-cst-dict-value-conc6-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc7-rep

    (defun pdf-cst-dict-value-conc7-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         7))))
      (let ((__function__ 'pdf-cst-dict-value-conc7-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-value-conc7 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-value-conc7-rep

    (defthm tree-listp-of-pdf-cst-dict-value-conc7-rep
      (b* ((csts (pdf-cst-dict-value-conc7-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc7-rep-match

    (defthm pdf-cst-dict-value-conc7-rep-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           7))
               (b* ((csts (pdf-cst-dict-value-conc7-rep cst)))
                 (pdf-cst-list-rep-matchp csts "rectangle")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc7-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc7-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc7-rep (tree-fix cst))
             (pdf-cst-dict-value-conc7-rep cst)))

    Theorem: pdf-cst-dict-value-conc7-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc7-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc7-rep cst)
                      (pdf-cst-dict-value-conc7-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc8-rep

    (defun pdf-cst-dict-value-conc8-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         8))))
      (let ((__function__ 'pdf-cst-dict-value-conc8-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-value-conc8 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-value-conc8-rep

    (defthm tree-listp-of-pdf-cst-dict-value-conc8-rep
      (b* ((csts (pdf-cst-dict-value-conc8-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc8-rep-match

    (defthm pdf-cst-dict-value-conc8-rep-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           8))
               (b* ((csts (pdf-cst-dict-value-conc8-rep cst)))
                 (pdf-cst-list-rep-matchp csts "reference")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc8-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc8-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc8-rep (tree-fix cst))
             (pdf-cst-dict-value-conc8-rep cst)))

    Theorem: pdf-cst-dict-value-conc8-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc8-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc8-rep cst)
                      (pdf-cst-dict-value-conc8-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc9-rep

    (defun pdf-cst-dict-value-conc9-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         9))))
      (let ((__function__ 'pdf-cst-dict-value-conc9-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-dict-value-conc9 cst)))))

    Theorem: tree-listp-of-pdf-cst-dict-value-conc9-rep

    (defthm tree-listp-of-pdf-cst-dict-value-conc9-rep
      (b* ((csts (pdf-cst-dict-value-conc9-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc9-rep-match

    (defthm pdf-cst-dict-value-conc9-rep-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           9))
               (b* ((csts (pdf-cst-dict-value-conc9-rep cst)))
                 (pdf-cst-list-rep-matchp csts "string")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc9-rep-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc9-rep-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc9-rep (tree-fix cst))
             (pdf-cst-dict-value-conc9-rep cst)))

    Theorem: pdf-cst-dict-value-conc9-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-dict-value-conc9-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc9-rep cst)
                      (pdf-cst-dict-value-conc9-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-start-dict-conc-rep

    (defun pdf-cst-start-dict-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "start-dict")))
      (let ((__function__ 'pdf-cst-start-dict-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-start-dict-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-start-dict-conc-rep

    (defthm tree-listp-of-pdf-cst-start-dict-conc-rep
      (b* ((csts (pdf-cst-start-dict-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-start-dict-conc-rep-match

    (defthm pdf-cst-start-dict-conc-rep-match
      (implies (pdf-cst-matchp cst "start-dict")
               (b* ((csts (pdf-cst-start-dict-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x3C.3C")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-start-dict-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-start-dict-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-start-dict-conc-rep (tree-fix cst))
             (pdf-cst-start-dict-conc-rep cst)))

    Theorem: pdf-cst-start-dict-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-start-dict-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-start-dict-conc-rep cst)
                      (pdf-cst-start-dict-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-end-dict-conc-rep

    (defun pdf-cst-end-dict-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "end-dict")))
      (let ((__function__ 'pdf-cst-end-dict-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-end-dict-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-end-dict-conc-rep

    (defthm tree-listp-of-pdf-cst-end-dict-conc-rep
      (b* ((csts (pdf-cst-end-dict-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-end-dict-conc-rep-match

    (defthm pdf-cst-end-dict-conc-rep-match
      (implies (pdf-cst-matchp cst "end-dict")
               (b* ((csts (pdf-cst-end-dict-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x3E.3E")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-end-dict-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-end-dict-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-end-dict-conc-rep (tree-fix cst))
             (pdf-cst-end-dict-conc-rep cst)))

    Theorem: pdf-cst-end-dict-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-end-dict-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-end-dict-conc-rep cst)
                      (pdf-cst-end-dict-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-digit1-9-conc-rep

    (defun pdf-cst-digit1-9-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "digit1-9")))
      (let ((__function__ 'pdf-cst-digit1-9-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-digit1-9-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-digit1-9-conc-rep

    (defthm tree-listp-of-pdf-cst-digit1-9-conc-rep
      (b* ((csts (pdf-cst-digit1-9-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-digit1-9-conc-rep-match

    (defthm pdf-cst-digit1-9-conc-rep-match
      (implies (pdf-cst-matchp cst "digit1-9")
               (b* ((csts (pdf-cst-digit1-9-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x31-39")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-digit1-9-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-digit1-9-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-digit1-9-conc-rep (tree-fix cst))
             (pdf-cst-digit1-9-conc-rep cst)))

    Theorem: pdf-cst-digit1-9-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-digit1-9-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-digit1-9-conc-rep cst)
                      (pdf-cst-digit1-9-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-digit-conc-rep

    (defun pdf-cst-digit-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "digit")))
      (let ((__function__ 'pdf-cst-digit-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-digit-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-digit-conc-rep

    (defthm tree-listp-of-pdf-cst-digit-conc-rep
      (b* ((csts (pdf-cst-digit-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-digit-conc-rep-match

    (defthm pdf-cst-digit-conc-rep-match
      (implies (pdf-cst-matchp cst "digit")
               (b* ((csts (pdf-cst-digit-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x30-39")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-digit-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-digit-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-digit-conc-rep (tree-fix cst))
             (pdf-cst-digit-conc-rep cst)))

    Theorem: pdf-cst-digit-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-digit-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-digit-conc-rep cst)
                      (pdf-cst-digit-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-left-bracket-conc-rep

    (defun pdf-cst-left-bracket-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "left-bracket")))
      (let ((__function__ 'pdf-cst-left-bracket-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-left-bracket-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-left-bracket-conc-rep

    (defthm tree-listp-of-pdf-cst-left-bracket-conc-rep
      (b* ((csts (pdf-cst-left-bracket-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-left-bracket-conc-rep-match

    (defthm pdf-cst-left-bracket-conc-rep-match
      (implies (pdf-cst-matchp cst "left-bracket")
               (b* ((csts (pdf-cst-left-bracket-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x5B")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-left-bracket-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-left-bracket-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-left-bracket-conc-rep (tree-fix cst))
             (pdf-cst-left-bracket-conc-rep cst)))

    Theorem: pdf-cst-left-bracket-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-left-bracket-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-left-bracket-conc-rep cst)
                      (pdf-cst-left-bracket-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-right-bracket-conc-rep

    (defun pdf-cst-right-bracket-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "right-bracket")))
      (let ((__function__ 'pdf-cst-right-bracket-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-right-bracket-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-right-bracket-conc-rep

    (defthm tree-listp-of-pdf-cst-right-bracket-conc-rep
      (b* ((csts (pdf-cst-right-bracket-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-right-bracket-conc-rep-match

    (defthm pdf-cst-right-bracket-conc-rep-match
      (implies (pdf-cst-matchp cst "right-bracket")
               (b* ((csts (pdf-cst-right-bracket-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x5D")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-right-bracket-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-right-bracket-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-right-bracket-conc-rep (tree-fix cst))
             (pdf-cst-right-bracket-conc-rep cst)))

    Theorem: pdf-cst-right-bracket-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-right-bracket-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-right-bracket-conc-rep cst)
                      (pdf-cst-right-bracket-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-null-conc-rep

    (defun pdf-cst-null-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "null")))
      (let ((__function__ 'pdf-cst-null-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-null-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-null-conc-rep

    (defthm tree-listp-of-pdf-cst-null-conc-rep
      (b* ((csts (pdf-cst-null-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-null-conc-rep-match

    (defthm pdf-cst-null-conc-rep-match
      (implies (pdf-cst-matchp cst "null")
               (b* ((csts (pdf-cst-null-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%s\"null\"")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-null-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-null-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-null-conc-rep (tree-fix cst))
             (pdf-cst-null-conc-rep cst)))

    Theorem: pdf-cst-null-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-null-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-null-conc-rep cst)
                      (pdf-cst-null-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-name-char-conc-rep

    (defun pdf-cst-name-char-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "name-char")))
      (let ((__function__ 'pdf-cst-name-char-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-name-char-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-name-char-conc-rep

    (defthm tree-listp-of-pdf-cst-name-char-conc-rep
      (b* ((csts (pdf-cst-name-char-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-name-char-conc-rep-match

    (defthm pdf-cst-name-char-conc-rep-match
      (implies (pdf-cst-matchp cst "name-char")
               (b* ((csts (pdf-cst-name-char-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x20-7E")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-name-char-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-name-char-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-name-char-conc-rep (tree-fix cst))
             (pdf-cst-name-char-conc-rep cst)))

    Theorem: pdf-cst-name-char-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-name-char-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-name-char-conc-rep cst)
                      (pdf-cst-name-char-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-plus-conc-rep

    (defun pdf-cst-plus-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "plus")))
      (let ((__function__ 'pdf-cst-plus-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-plus-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-plus-conc-rep

    (defthm tree-listp-of-pdf-cst-plus-conc-rep
      (b* ((csts (pdf-cst-plus-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-plus-conc-rep-match

    (defthm pdf-cst-plus-conc-rep-match
      (implies (pdf-cst-matchp cst "plus")
               (b* ((csts (pdf-cst-plus-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x2B")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-plus-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-plus-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-plus-conc-rep (tree-fix cst))
             (pdf-cst-plus-conc-rep cst)))

    Theorem: pdf-cst-plus-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-plus-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-plus-conc-rep cst)
                      (pdf-cst-plus-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-minus-conc-rep

    (defun pdf-cst-minus-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "minus")))
      (let ((__function__ 'pdf-cst-minus-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-minus-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-minus-conc-rep

    (defthm tree-listp-of-pdf-cst-minus-conc-rep
      (b* ((csts (pdf-cst-minus-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-minus-conc-rep-match

    (defthm pdf-cst-minus-conc-rep-match
      (implies (pdf-cst-matchp cst "minus")
               (b* ((csts (pdf-cst-minus-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x2D")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-minus-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-minus-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-minus-conc-rep (tree-fix cst))
             (pdf-cst-minus-conc-rep cst)))

    Theorem: pdf-cst-minus-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-minus-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-minus-conc-rep cst)
                      (pdf-cst-minus-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-slash-conc-rep

    (defun pdf-cst-slash-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "slash")))
      (let ((__function__ 'pdf-cst-slash-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-slash-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-slash-conc-rep

    (defthm tree-listp-of-pdf-cst-slash-conc-rep
      (b* ((csts (pdf-cst-slash-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-slash-conc-rep-match

    (defthm pdf-cst-slash-conc-rep-match
      (implies (pdf-cst-matchp cst "slash")
               (b* ((csts (pdf-cst-slash-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x2F")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-slash-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-slash-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-slash-conc-rep (tree-fix cst))
             (pdf-cst-slash-conc-rep cst)))

    Theorem: pdf-cst-slash-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-slash-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-slash-conc-rep cst)
                      (pdf-cst-slash-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-backslash-conc-rep

    (defun pdf-cst-backslash-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "backslash")))
      (let ((__function__ 'pdf-cst-backslash-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-backslash-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-backslash-conc-rep

    (defthm tree-listp-of-pdf-cst-backslash-conc-rep
      (b* ((csts (pdf-cst-backslash-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-backslash-conc-rep-match

    (defthm pdf-cst-backslash-conc-rep-match
      (implies (pdf-cst-matchp cst "backslash")
               (b* ((csts (pdf-cst-backslash-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x5C")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-backslash-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-backslash-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-backslash-conc-rep (tree-fix cst))
             (pdf-cst-backslash-conc-rep cst)))

    Theorem: pdf-cst-backslash-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-backslash-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-backslash-conc-rep cst)
                      (pdf-cst-backslash-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-zero-conc-rep

    (defun pdf-cst-zero-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "zero")))
      (let ((__function__ 'pdf-cst-zero-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-zero-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-zero-conc-rep

    (defthm tree-listp-of-pdf-cst-zero-conc-rep
      (b* ((csts (pdf-cst-zero-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-zero-conc-rep-match

    (defthm pdf-cst-zero-conc-rep-match
      (implies (pdf-cst-matchp cst "zero")
               (b* ((csts (pdf-cst-zero-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x30")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-zero-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-zero-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-zero-conc-rep (tree-fix cst))
             (pdf-cst-zero-conc-rep cst)))

    Theorem: pdf-cst-zero-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-zero-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-zero-conc-rep cst)
                      (pdf-cst-zero-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-period-conc-rep

    (defun pdf-cst-period-conc-rep (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "period")))
      (let ((__function__ 'pdf-cst-period-conc-rep))
        (declare (ignorable __function__))
        (tree-list-fix (nth 0 (pdf-cst-period-conc cst)))))

    Theorem: tree-listp-of-pdf-cst-period-conc-rep

    (defthm tree-listp-of-pdf-cst-period-conc-rep
      (b* ((csts (pdf-cst-period-conc-rep cst)))
        (tree-listp csts))
      :rule-classes :rewrite)

    Theorem: pdf-cst-period-conc-rep-match

    (defthm pdf-cst-period-conc-rep-match
      (implies (pdf-cst-matchp cst "period")
               (b* ((csts (pdf-cst-period-conc-rep cst)))
                 (pdf-cst-list-rep-matchp csts "%x2E")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-period-conc-rep-of-tree-fix-cst

    (defthm pdf-cst-period-conc-rep-of-tree-fix-cst
      (equal (pdf-cst-period-conc-rep (tree-fix cst))
             (pdf-cst-period-conc-rep cst)))

    Theorem: pdf-cst-period-conc-rep-tree-equiv-congruence-on-cst

    (defthm pdf-cst-period-conc-rep-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-period-conc-rep cst)
                      (pdf-cst-period-conc-rep cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-pdf-marker-conc-rep-elem

    (defun pdf-cst-pdf-marker-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "pdf-marker")))
      (let ((__function__ 'pdf-cst-pdf-marker-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-pdf-marker-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-pdf-marker-conc-rep-elem

    (defthm treep-of-pdf-cst-pdf-marker-conc-rep-elem
      (b* ((cst1 (pdf-cst-pdf-marker-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-pdf-marker-conc-rep-elem-match

    (defthm pdf-cst-pdf-marker-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "pdf-marker")
               (b* ((cst1 (pdf-cst-pdf-marker-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x25.50.44.46.45")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-pdf-marker-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-pdf-marker-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-pdf-marker-conc-rep-elem (tree-fix cst))
             (pdf-cst-pdf-marker-conc-rep-elem cst)))

    Theorem: pdf-cst-pdf-marker-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm
          pdf-cst-pdf-marker-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-pdf-marker-conc-rep-elem cst)
                      (pdf-cst-pdf-marker-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-obj-marker-conc-rep-elem

    (defun pdf-cst-obj-marker-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "obj-marker")))
      (let ((__function__ 'pdf-cst-obj-marker-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-obj-marker-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-obj-marker-conc-rep-elem

    (defthm treep-of-pdf-cst-obj-marker-conc-rep-elem
      (b* ((cst1 (pdf-cst-obj-marker-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-obj-marker-conc-rep-elem-match

    (defthm pdf-cst-obj-marker-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "obj-marker")
               (b* ((cst1 (pdf-cst-obj-marker-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x6F.62.6A")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-obj-marker-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-obj-marker-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-obj-marker-conc-rep-elem (tree-fix cst))
             (pdf-cst-obj-marker-conc-rep-elem cst)))

    Theorem: pdf-cst-obj-marker-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm
          pdf-cst-obj-marker-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-obj-marker-conc-rep-elem cst)
                      (pdf-cst-obj-marker-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-endobj-marker-conc-rep-elem

    (defun pdf-cst-endobj-marker-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "endobj-marker")))
      (let ((__function__ 'pdf-cst-endobj-marker-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0
                       (pdf-cst-endobj-marker-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-endobj-marker-conc-rep-elem

    (defthm treep-of-pdf-cst-endobj-marker-conc-rep-elem
      (b* ((cst1 (pdf-cst-endobj-marker-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-endobj-marker-conc-rep-elem-match

    (defthm pdf-cst-endobj-marker-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "endobj-marker")
               (b* ((cst1 (pdf-cst-endobj-marker-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x65.6E.64.6F.62.6A")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-endobj-marker-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-endobj-marker-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-endobj-marker-conc-rep-elem (tree-fix cst))
             (pdf-cst-endobj-marker-conc-rep-elem cst)))

    Theorem: pdf-cst-endobj-marker-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm
       pdf-cst-endobj-marker-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-endobj-marker-conc-rep-elem cst)
                      (pdf-cst-endobj-marker-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-stream-marker-conc-rep-elem

    (defun pdf-cst-stream-marker-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "stream-marker")))
      (let ((__function__ 'pdf-cst-stream-marker-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0
                       (pdf-cst-stream-marker-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-stream-marker-conc-rep-elem

    (defthm treep-of-pdf-cst-stream-marker-conc-rep-elem
      (b* ((cst1 (pdf-cst-stream-marker-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-stream-marker-conc-rep-elem-match

    (defthm pdf-cst-stream-marker-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "stream-marker")
               (b* ((cst1 (pdf-cst-stream-marker-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x73.74.72.65.61.6D")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-stream-marker-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-stream-marker-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-stream-marker-conc-rep-elem (tree-fix cst))
             (pdf-cst-stream-marker-conc-rep-elem cst)))

    Theorem: pdf-cst-stream-marker-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm
       pdf-cst-stream-marker-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-stream-marker-conc-rep-elem cst)
                      (pdf-cst-stream-marker-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-endstream-marker-conc-rep-elem

    (defun pdf-cst-endstream-marker-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "endstream-marker")))
      (let ((__function__ 'pdf-cst-endstream-marker-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0
                       (pdf-cst-endstream-marker-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-endstream-marker-conc-rep-elem

    (defthm treep-of-pdf-cst-endstream-marker-conc-rep-elem
      (b* ((cst1 (pdf-cst-endstream-marker-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-endstream-marker-conc-rep-elem-match

    (defthm pdf-cst-endstream-marker-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "endstream-marker")
               (b* ((cst1 (pdf-cst-endstream-marker-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x65.6E.64.73.74.72.65.61.6D")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-endstream-marker-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-endstream-marker-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-endstream-marker-conc-rep-elem (tree-fix cst))
             (pdf-cst-endstream-marker-conc-rep-elem cst)))

    Theorem: pdf-cst-endstream-marker-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm
     pdf-cst-endstream-marker-conc-rep-elem-tree-equiv-congruence-on-cst
     (implies
          (tree-equiv cst cst-equiv)
          (equal (pdf-cst-endstream-marker-conc-rep-elem cst)
                 (pdf-cst-endstream-marker-conc-rep-elem cst-equiv)))
     :rule-classes :congruence)

    Function: pdf-cst-xref-marker-conc-rep-elem

    (defun pdf-cst-xref-marker-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "xref-marker")))
      (let ((__function__ 'pdf-cst-xref-marker-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-xref-marker-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-xref-marker-conc-rep-elem

    (defthm treep-of-pdf-cst-xref-marker-conc-rep-elem
      (b* ((cst1 (pdf-cst-xref-marker-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-xref-marker-conc-rep-elem-match

    (defthm pdf-cst-xref-marker-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "xref-marker")
               (b* ((cst1 (pdf-cst-xref-marker-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x78.72.65.66")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-xref-marker-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-xref-marker-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-xref-marker-conc-rep-elem (tree-fix cst))
             (pdf-cst-xref-marker-conc-rep-elem cst)))

    Theorem: pdf-cst-xref-marker-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-xref-marker-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-xref-marker-conc-rep-elem cst)
                      (pdf-cst-xref-marker-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-startxref-marker-conc-rep-elem

    (defun pdf-cst-startxref-marker-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "startxref-marker")))
      (let ((__function__ 'pdf-cst-startxref-marker-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0
                       (pdf-cst-startxref-marker-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-startxref-marker-conc-rep-elem

    (defthm treep-of-pdf-cst-startxref-marker-conc-rep-elem
      (b* ((cst1 (pdf-cst-startxref-marker-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-startxref-marker-conc-rep-elem-match

    (defthm pdf-cst-startxref-marker-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "startxref-marker")
               (b* ((cst1 (pdf-cst-startxref-marker-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x73.74.61.72.74.78.72.65.66")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-startxref-marker-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-startxref-marker-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-startxref-marker-conc-rep-elem (tree-fix cst))
             (pdf-cst-startxref-marker-conc-rep-elem cst)))

    Theorem: pdf-cst-startxref-marker-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm
     pdf-cst-startxref-marker-conc-rep-elem-tree-equiv-congruence-on-cst
     (implies
          (tree-equiv cst cst-equiv)
          (equal (pdf-cst-startxref-marker-conc-rep-elem cst)
                 (pdf-cst-startxref-marker-conc-rep-elem cst-equiv)))
     :rule-classes :congruence)

    Function: pdf-cst-eof-marker-conc-rep-elem

    (defun pdf-cst-eof-marker-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "eof-marker")))
      (let ((__function__ 'pdf-cst-eof-marker-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-eof-marker-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-eof-marker-conc-rep-elem

    (defthm treep-of-pdf-cst-eof-marker-conc-rep-elem
      (b* ((cst1 (pdf-cst-eof-marker-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-eof-marker-conc-rep-elem-match

    (defthm pdf-cst-eof-marker-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "eof-marker")
               (b* ((cst1 (pdf-cst-eof-marker-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x25.25.45.4F.46")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-eof-marker-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-eof-marker-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-eof-marker-conc-rep-elem (tree-fix cst))
             (pdf-cst-eof-marker-conc-rep-elem cst)))

    Theorem: pdf-cst-eof-marker-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm
          pdf-cst-eof-marker-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-eof-marker-conc-rep-elem cst)
                      (pdf-cst-eof-marker-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-trailer-marker-conc-rep-elem

    (defun pdf-cst-trailer-marker-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "trailer-marker")))
      (let ((__function__ 'pdf-cst-trailer-marker-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0
                       (pdf-cst-trailer-marker-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-trailer-marker-conc-rep-elem

    (defthm treep-of-pdf-cst-trailer-marker-conc-rep-elem
      (b* ((cst1 (pdf-cst-trailer-marker-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-trailer-marker-conc-rep-elem-match

    (defthm pdf-cst-trailer-marker-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "trailer-marker")
               (b* ((cst1 (pdf-cst-trailer-marker-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x74.72.61.69.6C.65.72")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-trailer-marker-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-trailer-marker-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-trailer-marker-conc-rep-elem (tree-fix cst))
             (pdf-cst-trailer-marker-conc-rep-elem cst)))

    Theorem: pdf-cst-trailer-marker-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm
      pdf-cst-trailer-marker-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-trailer-marker-conc-rep-elem cst)
                      (pdf-cst-trailer-marker-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc1-rep-elem

    (defun pdf-cst-dict-entry-conc1-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         1))))
      (let ((__function__ 'pdf-cst-dict-entry-conc1-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-entry-conc1-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-entry-conc1-rep-elem

    (defthm treep-of-pdf-cst-dict-entry-conc1-rep-elem
      (b* ((cst1 (pdf-cst-dict-entry-conc1-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc1-rep-elem-match

    (defthm pdf-cst-dict-entry-conc1-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           1))
               (b* ((cst1 (pdf-cst-dict-entry-conc1-rep-elem cst)))
                 (pdf-cst-matchp cst1 "type-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc1-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc1-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc1-rep-elem (tree-fix cst))
             (pdf-cst-dict-entry-conc1-rep-elem cst)))

    Theorem: pdf-cst-dict-entry-conc1-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-entry-conc1-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc1-rep-elem cst)
                      (pdf-cst-dict-entry-conc1-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc2-rep-elem

    (defun pdf-cst-dict-entry-conc2-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         2))))
      (let ((__function__ 'pdf-cst-dict-entry-conc2-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-entry-conc2-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-entry-conc2-rep-elem

    (defthm treep-of-pdf-cst-dict-entry-conc2-rep-elem
      (b* ((cst1 (pdf-cst-dict-entry-conc2-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc2-rep-elem-match

    (defthm pdf-cst-dict-entry-conc2-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           2))
               (b* ((cst1 (pdf-cst-dict-entry-conc2-rep-elem cst)))
                 (pdf-cst-matchp cst1 "reference-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc2-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc2-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc2-rep-elem (tree-fix cst))
             (pdf-cst-dict-entry-conc2-rep-elem cst)))

    Theorem: pdf-cst-dict-entry-conc2-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-entry-conc2-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc2-rep-elem cst)
                      (pdf-cst-dict-entry-conc2-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc3-rep-elem

    (defun pdf-cst-dict-entry-conc3-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         3))))
      (let ((__function__ 'pdf-cst-dict-entry-conc3-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-entry-conc3-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-entry-conc3-rep-elem

    (defthm treep-of-pdf-cst-dict-entry-conc3-rep-elem
      (b* ((cst1 (pdf-cst-dict-entry-conc3-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc3-rep-elem-match

    (defthm pdf-cst-dict-entry-conc3-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           3))
               (b* ((cst1 (pdf-cst-dict-entry-conc3-rep-elem cst)))
                 (pdf-cst-matchp cst1 "reference-array-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc3-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc3-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc3-rep-elem (tree-fix cst))
             (pdf-cst-dict-entry-conc3-rep-elem cst)))

    Theorem: pdf-cst-dict-entry-conc3-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-entry-conc3-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc3-rep-elem cst)
                      (pdf-cst-dict-entry-conc3-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc4-rep-elem

    (defun pdf-cst-dict-entry-conc4-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         4))))
      (let ((__function__ 'pdf-cst-dict-entry-conc4-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-entry-conc4-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-entry-conc4-rep-elem

    (defthm treep-of-pdf-cst-dict-entry-conc4-rep-elem
      (b* ((cst1 (pdf-cst-dict-entry-conc4-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc4-rep-elem-match

    (defthm pdf-cst-dict-entry-conc4-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           4))
               (b* ((cst1 (pdf-cst-dict-entry-conc4-rep-elem cst)))
                 (pdf-cst-matchp cst1 "rectangle-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc4-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc4-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc4-rep-elem (tree-fix cst))
             (pdf-cst-dict-entry-conc4-rep-elem cst)))

    Theorem: pdf-cst-dict-entry-conc4-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-entry-conc4-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc4-rep-elem cst)
                      (pdf-cst-dict-entry-conc4-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc5-rep-elem

    (defun pdf-cst-dict-entry-conc5-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         5))))
      (let ((__function__ 'pdf-cst-dict-entry-conc5-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-entry-conc5-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-entry-conc5-rep-elem

    (defthm treep-of-pdf-cst-dict-entry-conc5-rep-elem
      (b* ((cst1 (pdf-cst-dict-entry-conc5-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc5-rep-elem-match

    (defthm pdf-cst-dict-entry-conc5-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           5))
               (b* ((cst1 (pdf-cst-dict-entry-conc5-rep-elem cst)))
                 (pdf-cst-matchp cst1 "number-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc5-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc5-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc5-rep-elem (tree-fix cst))
             (pdf-cst-dict-entry-conc5-rep-elem cst)))

    Theorem: pdf-cst-dict-entry-conc5-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-entry-conc5-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc5-rep-elem cst)
                      (pdf-cst-dict-entry-conc5-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc6-rep-elem

    (defun pdf-cst-dict-entry-conc6-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         6))))
      (let ((__function__ 'pdf-cst-dict-entry-conc6-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-entry-conc6-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-entry-conc6-rep-elem

    (defthm treep-of-pdf-cst-dict-entry-conc6-rep-elem
      (b* ((cst1 (pdf-cst-dict-entry-conc6-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc6-rep-elem-match

    (defthm pdf-cst-dict-entry-conc6-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           6))
               (b* ((cst1 (pdf-cst-dict-entry-conc6-rep-elem cst)))
                 (pdf-cst-matchp cst1 "name-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc6-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc6-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc6-rep-elem (tree-fix cst))
             (pdf-cst-dict-entry-conc6-rep-elem cst)))

    Theorem: pdf-cst-dict-entry-conc6-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-entry-conc6-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc6-rep-elem cst)
                      (pdf-cst-dict-entry-conc6-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc7-rep-elem

    (defun pdf-cst-dict-entry-conc7-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         7))))
      (let ((__function__ 'pdf-cst-dict-entry-conc7-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-entry-conc7-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-entry-conc7-rep-elem

    (defthm treep-of-pdf-cst-dict-entry-conc7-rep-elem
      (b* ((cst1 (pdf-cst-dict-entry-conc7-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc7-rep-elem-match

    (defthm pdf-cst-dict-entry-conc7-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           7))
               (b* ((cst1 (pdf-cst-dict-entry-conc7-rep-elem cst)))
                 (pdf-cst-matchp cst1 "font-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc7-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc7-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc7-rep-elem (tree-fix cst))
             (pdf-cst-dict-entry-conc7-rep-elem cst)))

    Theorem: pdf-cst-dict-entry-conc7-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-entry-conc7-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc7-rep-elem cst)
                      (pdf-cst-dict-entry-conc7-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-entry-conc8-rep-elem

    (defun pdf-cst-dict-entry-conc8-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-entry")
                                  (equal (pdf-cst-dict-entry-conc? cst)
                                         8))))
      (let ((__function__ 'pdf-cst-dict-entry-conc8-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-entry-conc8-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-entry-conc8-rep-elem

    (defthm treep-of-pdf-cst-dict-entry-conc8-rep-elem
      (b* ((cst1 (pdf-cst-dict-entry-conc8-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc8-rep-elem-match

    (defthm pdf-cst-dict-entry-conc8-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-entry")
                    (equal (pdf-cst-dict-entry-conc? cst)
                           8))
               (b* ((cst1 (pdf-cst-dict-entry-conc8-rep-elem cst)))
                 (pdf-cst-matchp cst1 "default-entry")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-entry-conc8-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-entry-conc8-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-entry-conc8-rep-elem (tree-fix cst))
             (pdf-cst-dict-entry-conc8-rep-elem cst)))

    Theorem: pdf-cst-dict-entry-conc8-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-entry-conc8-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-entry-conc8-rep-elem cst)
                      (pdf-cst-dict-entry-conc8-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc1-rep-elem

    (defun pdf-cst-dict-value-conc1-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         1))))
      (let ((__function__ 'pdf-cst-dict-value-conc1-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-value-conc1-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-value-conc1-rep-elem

    (defthm treep-of-pdf-cst-dict-value-conc1-rep-elem
      (b* ((cst1 (pdf-cst-dict-value-conc1-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc1-rep-elem-match

    (defthm pdf-cst-dict-value-conc1-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           1))
               (b* ((cst1 (pdf-cst-dict-value-conc1-rep-elem cst)))
                 (pdf-cst-matchp cst1 "boolean")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc1-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc1-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc1-rep-elem (tree-fix cst))
             (pdf-cst-dict-value-conc1-rep-elem cst)))

    Theorem: pdf-cst-dict-value-conc1-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-value-conc1-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc1-rep-elem cst)
                      (pdf-cst-dict-value-conc1-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc2-rep-elem

    (defun pdf-cst-dict-value-conc2-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         2))))
      (let ((__function__ 'pdf-cst-dict-value-conc2-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-value-conc2-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-value-conc2-rep-elem

    (defthm treep-of-pdf-cst-dict-value-conc2-rep-elem
      (b* ((cst1 (pdf-cst-dict-value-conc2-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc2-rep-elem-match

    (defthm pdf-cst-dict-value-conc2-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           2))
               (b* ((cst1 (pdf-cst-dict-value-conc2-rep-elem cst)))
                 (pdf-cst-matchp cst1 "number")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc2-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc2-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc2-rep-elem (tree-fix cst))
             (pdf-cst-dict-value-conc2-rep-elem cst)))

    Theorem: pdf-cst-dict-value-conc2-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-value-conc2-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc2-rep-elem cst)
                      (pdf-cst-dict-value-conc2-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc3-rep-elem

    (defun pdf-cst-dict-value-conc3-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         3))))
      (let ((__function__ 'pdf-cst-dict-value-conc3-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-value-conc3-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-value-conc3-rep-elem

    (defthm treep-of-pdf-cst-dict-value-conc3-rep-elem
      (b* ((cst1 (pdf-cst-dict-value-conc3-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc3-rep-elem-match

    (defthm pdf-cst-dict-value-conc3-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           3))
               (b* ((cst1 (pdf-cst-dict-value-conc3-rep-elem cst)))
                 (pdf-cst-matchp cst1 "name")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc3-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc3-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc3-rep-elem (tree-fix cst))
             (pdf-cst-dict-value-conc3-rep-elem cst)))

    Theorem: pdf-cst-dict-value-conc3-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-value-conc3-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc3-rep-elem cst)
                      (pdf-cst-dict-value-conc3-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc4-rep-elem

    (defun pdf-cst-dict-value-conc4-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         4))))
      (let ((__function__ 'pdf-cst-dict-value-conc4-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-value-conc4-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-value-conc4-rep-elem

    (defthm treep-of-pdf-cst-dict-value-conc4-rep-elem
      (b* ((cst1 (pdf-cst-dict-value-conc4-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc4-rep-elem-match

    (defthm pdf-cst-dict-value-conc4-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           4))
               (b* ((cst1 (pdf-cst-dict-value-conc4-rep-elem cst)))
                 (pdf-cst-matchp cst1 "array")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc4-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc4-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc4-rep-elem (tree-fix cst))
             (pdf-cst-dict-value-conc4-rep-elem cst)))

    Theorem: pdf-cst-dict-value-conc4-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-value-conc4-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc4-rep-elem cst)
                      (pdf-cst-dict-value-conc4-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc5-rep-elem

    (defun pdf-cst-dict-value-conc5-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         5))))
      (let ((__function__ 'pdf-cst-dict-value-conc5-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-value-conc5-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-value-conc5-rep-elem

    (defthm treep-of-pdf-cst-dict-value-conc5-rep-elem
      (b* ((cst1 (pdf-cst-dict-value-conc5-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc5-rep-elem-match

    (defthm pdf-cst-dict-value-conc5-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           5))
               (b* ((cst1 (pdf-cst-dict-value-conc5-rep-elem cst)))
                 (pdf-cst-matchp cst1 "dictionary")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc5-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc5-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc5-rep-elem (tree-fix cst))
             (pdf-cst-dict-value-conc5-rep-elem cst)))

    Theorem: pdf-cst-dict-value-conc5-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-value-conc5-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc5-rep-elem cst)
                      (pdf-cst-dict-value-conc5-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc6-rep-elem

    (defun pdf-cst-dict-value-conc6-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         6))))
      (let ((__function__ 'pdf-cst-dict-value-conc6-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-value-conc6-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-value-conc6-rep-elem

    (defthm treep-of-pdf-cst-dict-value-conc6-rep-elem
      (b* ((cst1 (pdf-cst-dict-value-conc6-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc6-rep-elem-match

    (defthm pdf-cst-dict-value-conc6-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           6))
               (b* ((cst1 (pdf-cst-dict-value-conc6-rep-elem cst)))
                 (pdf-cst-matchp cst1 "null")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc6-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc6-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc6-rep-elem (tree-fix cst))
             (pdf-cst-dict-value-conc6-rep-elem cst)))

    Theorem: pdf-cst-dict-value-conc6-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-value-conc6-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc6-rep-elem cst)
                      (pdf-cst-dict-value-conc6-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc7-rep-elem

    (defun pdf-cst-dict-value-conc7-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         7))))
      (let ((__function__ 'pdf-cst-dict-value-conc7-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-value-conc7-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-value-conc7-rep-elem

    (defthm treep-of-pdf-cst-dict-value-conc7-rep-elem
      (b* ((cst1 (pdf-cst-dict-value-conc7-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc7-rep-elem-match

    (defthm pdf-cst-dict-value-conc7-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           7))
               (b* ((cst1 (pdf-cst-dict-value-conc7-rep-elem cst)))
                 (pdf-cst-matchp cst1 "rectangle")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc7-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc7-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc7-rep-elem (tree-fix cst))
             (pdf-cst-dict-value-conc7-rep-elem cst)))

    Theorem: pdf-cst-dict-value-conc7-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-value-conc7-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc7-rep-elem cst)
                      (pdf-cst-dict-value-conc7-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc8-rep-elem

    (defun pdf-cst-dict-value-conc8-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         8))))
      (let ((__function__ 'pdf-cst-dict-value-conc8-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-value-conc8-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-value-conc8-rep-elem

    (defthm treep-of-pdf-cst-dict-value-conc8-rep-elem
      (b* ((cst1 (pdf-cst-dict-value-conc8-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc8-rep-elem-match

    (defthm pdf-cst-dict-value-conc8-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           8))
               (b* ((cst1 (pdf-cst-dict-value-conc8-rep-elem cst)))
                 (pdf-cst-matchp cst1 "reference")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc8-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc8-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc8-rep-elem (tree-fix cst))
             (pdf-cst-dict-value-conc8-rep-elem cst)))

    Theorem: pdf-cst-dict-value-conc8-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-value-conc8-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc8-rep-elem cst)
                      (pdf-cst-dict-value-conc8-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-dict-value-conc9-rep-elem

    (defun pdf-cst-dict-value-conc9-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (and (pdf-cst-matchp cst "dict-value")
                                  (equal (pdf-cst-dict-value-conc? cst)
                                         9))))
      (let ((__function__ 'pdf-cst-dict-value-conc9-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-dict-value-conc9-rep cst)))))

    Theorem: treep-of-pdf-cst-dict-value-conc9-rep-elem

    (defthm treep-of-pdf-cst-dict-value-conc9-rep-elem
      (b* ((cst1 (pdf-cst-dict-value-conc9-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc9-rep-elem-match

    (defthm pdf-cst-dict-value-conc9-rep-elem-match
      (implies (and (pdf-cst-matchp cst "dict-value")
                    (equal (pdf-cst-dict-value-conc? cst)
                           9))
               (b* ((cst1 (pdf-cst-dict-value-conc9-rep-elem cst)))
                 (pdf-cst-matchp cst1 "string")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-dict-value-conc9-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-dict-value-conc9-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-dict-value-conc9-rep-elem (tree-fix cst))
             (pdf-cst-dict-value-conc9-rep-elem cst)))

    Theorem: pdf-cst-dict-value-conc9-rep-elem-tree-equiv-congruence-on-cst

    (defthm
         pdf-cst-dict-value-conc9-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-dict-value-conc9-rep-elem cst)
                      (pdf-cst-dict-value-conc9-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-start-dict-conc-rep-elem

    (defun pdf-cst-start-dict-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "start-dict")))
      (let ((__function__ 'pdf-cst-start-dict-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-start-dict-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-start-dict-conc-rep-elem

    (defthm treep-of-pdf-cst-start-dict-conc-rep-elem
      (b* ((cst1 (pdf-cst-start-dict-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-start-dict-conc-rep-elem-match

    (defthm pdf-cst-start-dict-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "start-dict")
               (b* ((cst1 (pdf-cst-start-dict-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x3C.3C")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-start-dict-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-start-dict-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-start-dict-conc-rep-elem (tree-fix cst))
             (pdf-cst-start-dict-conc-rep-elem cst)))

    Theorem: pdf-cst-start-dict-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm
          pdf-cst-start-dict-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-start-dict-conc-rep-elem cst)
                      (pdf-cst-start-dict-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-end-dict-conc-rep-elem

    (defun pdf-cst-end-dict-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "end-dict")))
      (let ((__function__ 'pdf-cst-end-dict-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-end-dict-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-end-dict-conc-rep-elem

    (defthm treep-of-pdf-cst-end-dict-conc-rep-elem
      (b* ((cst1 (pdf-cst-end-dict-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-end-dict-conc-rep-elem-match

    (defthm pdf-cst-end-dict-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "end-dict")
               (b* ((cst1 (pdf-cst-end-dict-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x3E.3E")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-end-dict-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-end-dict-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-end-dict-conc-rep-elem (tree-fix cst))
             (pdf-cst-end-dict-conc-rep-elem cst)))

    Theorem: pdf-cst-end-dict-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm pdf-cst-end-dict-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-end-dict-conc-rep-elem cst)
                      (pdf-cst-end-dict-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-digit1-9-conc-rep-elem

    (defun pdf-cst-digit1-9-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "digit1-9")))
      (let ((__function__ 'pdf-cst-digit1-9-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-digit1-9-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-digit1-9-conc-rep-elem

    (defthm treep-of-pdf-cst-digit1-9-conc-rep-elem
      (b* ((cst1 (pdf-cst-digit1-9-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-digit1-9-conc-rep-elem-match

    (defthm pdf-cst-digit1-9-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "digit1-9")
               (b* ((cst1 (pdf-cst-digit1-9-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x31-39")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-digit1-9-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-digit1-9-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-digit1-9-conc-rep-elem (tree-fix cst))
             (pdf-cst-digit1-9-conc-rep-elem cst)))

    Theorem: pdf-cst-digit1-9-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm pdf-cst-digit1-9-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-digit1-9-conc-rep-elem cst)
                      (pdf-cst-digit1-9-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-digit-conc-rep-elem

    (defun pdf-cst-digit-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "digit")))
      (let ((__function__ 'pdf-cst-digit-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-digit-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-digit-conc-rep-elem

    (defthm treep-of-pdf-cst-digit-conc-rep-elem
      (b* ((cst1 (pdf-cst-digit-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-digit-conc-rep-elem-match

    (defthm pdf-cst-digit-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "digit")
               (b* ((cst1 (pdf-cst-digit-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x30-39")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-digit-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-digit-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-digit-conc-rep-elem (tree-fix cst))
             (pdf-cst-digit-conc-rep-elem cst)))

    Theorem: pdf-cst-digit-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm pdf-cst-digit-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-digit-conc-rep-elem cst)
                      (pdf-cst-digit-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-left-bracket-conc-rep-elem

    (defun pdf-cst-left-bracket-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "left-bracket")))
      (let ((__function__ 'pdf-cst-left-bracket-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0
                       (pdf-cst-left-bracket-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-left-bracket-conc-rep-elem

    (defthm treep-of-pdf-cst-left-bracket-conc-rep-elem
      (b* ((cst1 (pdf-cst-left-bracket-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-left-bracket-conc-rep-elem-match

    (defthm pdf-cst-left-bracket-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "left-bracket")
               (b* ((cst1 (pdf-cst-left-bracket-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x5B")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-left-bracket-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-left-bracket-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-left-bracket-conc-rep-elem (tree-fix cst))
             (pdf-cst-left-bracket-conc-rep-elem cst)))

    Theorem: pdf-cst-left-bracket-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm
        pdf-cst-left-bracket-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-left-bracket-conc-rep-elem cst)
                      (pdf-cst-left-bracket-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-right-bracket-conc-rep-elem

    (defun pdf-cst-right-bracket-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "right-bracket")))
      (let ((__function__ 'pdf-cst-right-bracket-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0
                       (pdf-cst-right-bracket-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-right-bracket-conc-rep-elem

    (defthm treep-of-pdf-cst-right-bracket-conc-rep-elem
      (b* ((cst1 (pdf-cst-right-bracket-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-right-bracket-conc-rep-elem-match

    (defthm pdf-cst-right-bracket-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "right-bracket")
               (b* ((cst1 (pdf-cst-right-bracket-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x5D")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-right-bracket-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-right-bracket-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-right-bracket-conc-rep-elem (tree-fix cst))
             (pdf-cst-right-bracket-conc-rep-elem cst)))

    Theorem: pdf-cst-right-bracket-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm
       pdf-cst-right-bracket-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-right-bracket-conc-rep-elem cst)
                      (pdf-cst-right-bracket-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-null-conc-rep-elem

    (defun pdf-cst-null-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "null")))
      (let ((__function__ 'pdf-cst-null-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-null-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-null-conc-rep-elem

    (defthm treep-of-pdf-cst-null-conc-rep-elem
      (b* ((cst1 (pdf-cst-null-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-null-conc-rep-elem-match

    (defthm pdf-cst-null-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "null")
               (b* ((cst1 (pdf-cst-null-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%s\"null\"")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-null-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-null-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-null-conc-rep-elem (tree-fix cst))
             (pdf-cst-null-conc-rep-elem cst)))

    Theorem: pdf-cst-null-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm pdf-cst-null-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-null-conc-rep-elem cst)
                      (pdf-cst-null-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-name-char-conc-rep-elem

    (defun pdf-cst-name-char-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "name-char")))
      (let ((__function__ 'pdf-cst-name-char-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-name-char-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-name-char-conc-rep-elem

    (defthm treep-of-pdf-cst-name-char-conc-rep-elem
      (b* ((cst1 (pdf-cst-name-char-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-name-char-conc-rep-elem-match

    (defthm pdf-cst-name-char-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "name-char")
               (b* ((cst1 (pdf-cst-name-char-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x20-7E")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-name-char-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-name-char-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-name-char-conc-rep-elem (tree-fix cst))
             (pdf-cst-name-char-conc-rep-elem cst)))

    Theorem: pdf-cst-name-char-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm pdf-cst-name-char-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-name-char-conc-rep-elem cst)
                      (pdf-cst-name-char-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-plus-conc-rep-elem

    (defun pdf-cst-plus-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "plus")))
      (let ((__function__ 'pdf-cst-plus-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-plus-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-plus-conc-rep-elem

    (defthm treep-of-pdf-cst-plus-conc-rep-elem
      (b* ((cst1 (pdf-cst-plus-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-plus-conc-rep-elem-match

    (defthm pdf-cst-plus-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "plus")
               (b* ((cst1 (pdf-cst-plus-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x2B")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-plus-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-plus-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-plus-conc-rep-elem (tree-fix cst))
             (pdf-cst-plus-conc-rep-elem cst)))

    Theorem: pdf-cst-plus-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm pdf-cst-plus-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-plus-conc-rep-elem cst)
                      (pdf-cst-plus-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-minus-conc-rep-elem

    (defun pdf-cst-minus-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "minus")))
      (let ((__function__ 'pdf-cst-minus-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-minus-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-minus-conc-rep-elem

    (defthm treep-of-pdf-cst-minus-conc-rep-elem
      (b* ((cst1 (pdf-cst-minus-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-minus-conc-rep-elem-match

    (defthm pdf-cst-minus-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "minus")
               (b* ((cst1 (pdf-cst-minus-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x2D")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-minus-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-minus-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-minus-conc-rep-elem (tree-fix cst))
             (pdf-cst-minus-conc-rep-elem cst)))

    Theorem: pdf-cst-minus-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm pdf-cst-minus-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-minus-conc-rep-elem cst)
                      (pdf-cst-minus-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-slash-conc-rep-elem

    (defun pdf-cst-slash-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "slash")))
      (let ((__function__ 'pdf-cst-slash-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-slash-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-slash-conc-rep-elem

    (defthm treep-of-pdf-cst-slash-conc-rep-elem
      (b* ((cst1 (pdf-cst-slash-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-slash-conc-rep-elem-match

    (defthm pdf-cst-slash-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "slash")
               (b* ((cst1 (pdf-cst-slash-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x2F")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-slash-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-slash-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-slash-conc-rep-elem (tree-fix cst))
             (pdf-cst-slash-conc-rep-elem cst)))

    Theorem: pdf-cst-slash-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm pdf-cst-slash-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-slash-conc-rep-elem cst)
                      (pdf-cst-slash-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-backslash-conc-rep-elem

    (defun pdf-cst-backslash-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "backslash")))
      (let ((__function__ 'pdf-cst-backslash-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-backslash-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-backslash-conc-rep-elem

    (defthm treep-of-pdf-cst-backslash-conc-rep-elem
      (b* ((cst1 (pdf-cst-backslash-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-backslash-conc-rep-elem-match

    (defthm pdf-cst-backslash-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "backslash")
               (b* ((cst1 (pdf-cst-backslash-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x5C")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-backslash-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-backslash-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-backslash-conc-rep-elem (tree-fix cst))
             (pdf-cst-backslash-conc-rep-elem cst)))

    Theorem: pdf-cst-backslash-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm pdf-cst-backslash-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-backslash-conc-rep-elem cst)
                      (pdf-cst-backslash-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-zero-conc-rep-elem

    (defun pdf-cst-zero-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "zero")))
      (let ((__function__ 'pdf-cst-zero-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-zero-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-zero-conc-rep-elem

    (defthm treep-of-pdf-cst-zero-conc-rep-elem
      (b* ((cst1 (pdf-cst-zero-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-zero-conc-rep-elem-match

    (defthm pdf-cst-zero-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "zero")
               (b* ((cst1 (pdf-cst-zero-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x30")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-zero-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-zero-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-zero-conc-rep-elem (tree-fix cst))
             (pdf-cst-zero-conc-rep-elem cst)))

    Theorem: pdf-cst-zero-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm pdf-cst-zero-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-zero-conc-rep-elem cst)
                      (pdf-cst-zero-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)

    Function: pdf-cst-period-conc-rep-elem

    (defun pdf-cst-period-conc-rep-elem (cst)
      (declare (xargs :guard (treep cst)))
      (declare (xargs :guard (pdf-cst-matchp cst "period")))
      (let ((__function__ 'pdf-cst-period-conc-rep-elem))
        (declare (ignorable __function__))
        (tree-fix (nth 0 (pdf-cst-period-conc-rep cst)))))

    Theorem: treep-of-pdf-cst-period-conc-rep-elem

    (defthm treep-of-pdf-cst-period-conc-rep-elem
      (b* ((cst1 (pdf-cst-period-conc-rep-elem cst)))
        (treep cst1))
      :rule-classes :rewrite)

    Theorem: pdf-cst-period-conc-rep-elem-match

    (defthm pdf-cst-period-conc-rep-elem-match
      (implies (pdf-cst-matchp cst "period")
               (b* ((cst1 (pdf-cst-period-conc-rep-elem cst)))
                 (pdf-cst-matchp cst1 "%x2E")))
      :rule-classes :rewrite)

    Theorem: pdf-cst-period-conc-rep-elem-of-tree-fix-cst

    (defthm pdf-cst-period-conc-rep-elem-of-tree-fix-cst
      (equal (pdf-cst-period-conc-rep-elem (tree-fix cst))
             (pdf-cst-period-conc-rep-elem cst)))

    Theorem: pdf-cst-period-conc-rep-elem-tree-equiv-congruence-on-cst

    (defthm pdf-cst-period-conc-rep-elem-tree-equiv-congruence-on-cst
      (implies (tree-equiv cst cst-equiv)
               (equal (pdf-cst-period-conc-rep-elem cst)
                      (pdf-cst-period-conc-rep-elem cst-equiv)))
      :rule-classes :congruence)