• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
        • Symbolic-test-vectors
        • Esim-primitives
        • E-conversion
          • Vl-ealist-p
          • Modinsts-to-eoccs
          • Vl-module-make-esim
          • Exploding-vectors
            • Vl-wirealist-p
            • Emodwire-encoding
            • Vl-emodwire-p
            • Vl-emodwirelistlist
              • Vl-emodwirelistlist-fix
                • Vl-emodwirelistlist-equiv
                • Vl-emodwirelistlist-p
              • Vl-emodwirelist
            • Resolving-multiple-drivers
            • Vl-modulelist-make-esims
            • Vl-module-check-e-ok
            • Vl-collect-design-wires
            • Adding-z-drivers
            • Vl-design-to-e
            • Vl-design-to-e-check-ports
            • Vl-design-to-e-main
            • Port-bit-checking
          • Esim-steps
          • Patterns
          • Mod-internal-paths
          • Defmodules
          • Esim-simplify-update-fns
          • Esim-tutorial
          • Esim-vl
        • Vl2014
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-emodwirelistlist

    Vl-emodwirelistlist-fix

    (vl-emodwirelistlist-fix x) is a usual ACL2::fty list fixing function.

    Signature
    (vl-emodwirelistlist-fix x) → fty::newx
    Arguments
    x — Guard (vl-emodwirelistlist-p x).
    Returns
    fty::newx — Type (vl-emodwirelistlist-p fty::newx).

    In the logic, we apply vl-emodwirelist-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: vl-emodwirelistlist-fix$inline

    (defun vl-emodwirelistlist-fix$inline (x)
      (declare (xargs :guard (vl-emodwirelistlist-p x)))
      (let ((__function__ 'vl-emodwirelistlist-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 x
               (cons (vl-emodwirelist-fix (car x))
                     (vl-emodwirelistlist-fix (cdr x))))
             :exec x)))

    Theorem: vl-emodwirelistlist-p-of-vl-emodwirelistlist-fix

    (defthm vl-emodwirelistlist-p-of-vl-emodwirelistlist-fix
      (b* ((fty::newx (vl-emodwirelistlist-fix$inline x)))
        (vl-emodwirelistlist-p fty::newx))
      :rule-classes :rewrite)

    Theorem: vl-emodwirelistlist-fix-when-vl-emodwirelistlist-p

    (defthm vl-emodwirelistlist-fix-when-vl-emodwirelistlist-p
      (implies (vl-emodwirelistlist-p x)
               (equal (vl-emodwirelistlist-fix x) x)))

    Function: vl-emodwirelistlist-equiv$inline

    (defun vl-emodwirelistlist-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (vl-emodwirelistlist-p acl2::x)
                                  (vl-emodwirelistlist-p acl2::y))))
      (equal (vl-emodwirelistlist-fix acl2::x)
             (vl-emodwirelistlist-fix acl2::y)))

    Theorem: vl-emodwirelistlist-equiv-is-an-equivalence

    (defthm vl-emodwirelistlist-equiv-is-an-equivalence
      (and (booleanp (vl-emodwirelistlist-equiv x y))
           (vl-emodwirelistlist-equiv x x)
           (implies (vl-emodwirelistlist-equiv x y)
                    (vl-emodwirelistlist-equiv y x))
           (implies (and (vl-emodwirelistlist-equiv x y)
                         (vl-emodwirelistlist-equiv y z))
                    (vl-emodwirelistlist-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: vl-emodwirelistlist-equiv-implies-equal-vl-emodwirelistlist-fix-1

    (defthm
      vl-emodwirelistlist-equiv-implies-equal-vl-emodwirelistlist-fix-1
      (implies (vl-emodwirelistlist-equiv acl2::x x-equiv)
               (equal (vl-emodwirelistlist-fix acl2::x)
                      (vl-emodwirelistlist-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-emodwirelistlist-fix-under-vl-emodwirelistlist-equiv

    (defthm vl-emodwirelistlist-fix-under-vl-emodwirelistlist-equiv
      (vl-emodwirelistlist-equiv (vl-emodwirelistlist-fix acl2::x)
                                 acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-vl-emodwirelistlist-fix-1-forward-to-vl-emodwirelistlist-equiv

    (defthm
     equal-of-vl-emodwirelistlist-fix-1-forward-to-vl-emodwirelistlist-equiv
     (implies (equal (vl-emodwirelistlist-fix acl2::x)
                     acl2::y)
              (vl-emodwirelistlist-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: equal-of-vl-emodwirelistlist-fix-2-forward-to-vl-emodwirelistlist-equiv

    (defthm
     equal-of-vl-emodwirelistlist-fix-2-forward-to-vl-emodwirelistlist-equiv
     (implies (equal acl2::x
                     (vl-emodwirelistlist-fix acl2::y))
              (vl-emodwirelistlist-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: vl-emodwirelistlist-equiv-of-vl-emodwirelistlist-fix-1-forward

    (defthm
         vl-emodwirelistlist-equiv-of-vl-emodwirelistlist-fix-1-forward
      (implies
           (vl-emodwirelistlist-equiv (vl-emodwirelistlist-fix acl2::x)
                                      acl2::y)
           (vl-emodwirelistlist-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-emodwirelistlist-equiv-of-vl-emodwirelistlist-fix-2-forward

    (defthm
         vl-emodwirelistlist-equiv-of-vl-emodwirelistlist-fix-2-forward
      (implies
           (vl-emodwirelistlist-equiv acl2::x
                                      (vl-emodwirelistlist-fix acl2::y))
           (vl-emodwirelistlist-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: car-of-vl-emodwirelistlist-fix-x-under-vl-emodwirelist-equiv

    (defthm car-of-vl-emodwirelistlist-fix-x-under-vl-emodwirelist-equiv
      (vl-emodwirelist-equiv (car (vl-emodwirelistlist-fix acl2::x))
                             (car acl2::x)))

    Theorem: car-vl-emodwirelistlist-equiv-congruence-on-x-under-vl-emodwirelist-equiv

    (defthm
     car-vl-emodwirelistlist-equiv-congruence-on-x-under-vl-emodwirelist-equiv
     (implies (vl-emodwirelistlist-equiv acl2::x x-equiv)
              (vl-emodwirelist-equiv (car acl2::x)
                                     (car x-equiv)))
     :rule-classes :congruence)

    Theorem: cdr-of-vl-emodwirelistlist-fix-x-under-vl-emodwirelistlist-equiv

    (defthm
       cdr-of-vl-emodwirelistlist-fix-x-under-vl-emodwirelistlist-equiv
      (vl-emodwirelistlist-equiv (cdr (vl-emodwirelistlist-fix acl2::x))
                                 (cdr acl2::x)))

    Theorem: cdr-vl-emodwirelistlist-equiv-congruence-on-x-under-vl-emodwirelistlist-equiv

    (defthm
     cdr-vl-emodwirelistlist-equiv-congruence-on-x-under-vl-emodwirelistlist-equiv
     (implies (vl-emodwirelistlist-equiv acl2::x x-equiv)
              (vl-emodwirelistlist-equiv (cdr acl2::x)
                                         (cdr x-equiv)))
     :rule-classes :congruence)

    Theorem: cons-of-vl-emodwirelist-fix-x-under-vl-emodwirelistlist-equiv

    (defthm
          cons-of-vl-emodwirelist-fix-x-under-vl-emodwirelistlist-equiv
      (vl-emodwirelistlist-equiv (cons (vl-emodwirelist-fix acl2::x)
                                       acl2::y)
                                 (cons acl2::x acl2::y)))

    Theorem: cons-vl-emodwirelist-equiv-congruence-on-x-under-vl-emodwirelistlist-equiv

    (defthm
     cons-vl-emodwirelist-equiv-congruence-on-x-under-vl-emodwirelistlist-equiv
     (implies (vl-emodwirelist-equiv acl2::x x-equiv)
              (vl-emodwirelistlist-equiv (cons acl2::x acl2::y)
                                         (cons x-equiv acl2::y)))
     :rule-classes :congruence)

    Theorem: cons-of-vl-emodwirelistlist-fix-y-under-vl-emodwirelistlist-equiv

    (defthm
      cons-of-vl-emodwirelistlist-fix-y-under-vl-emodwirelistlist-equiv
     (vl-emodwirelistlist-equiv (cons acl2::x
                                      (vl-emodwirelistlist-fix acl2::y))
                                (cons acl2::x acl2::y)))

    Theorem: cons-vl-emodwirelistlist-equiv-congruence-on-y-under-vl-emodwirelistlist-equiv

    (defthm
     cons-vl-emodwirelistlist-equiv-congruence-on-y-under-vl-emodwirelistlist-equiv
     (implies (vl-emodwirelistlist-equiv acl2::y y-equiv)
              (vl-emodwirelistlist-equiv (cons acl2::x acl2::y)
                                         (cons acl2::x y-equiv)))
     :rule-classes :congruence)

    Theorem: consp-of-vl-emodwirelistlist-fix

    (defthm consp-of-vl-emodwirelistlist-fix
      (equal (consp (vl-emodwirelistlist-fix acl2::x))
             (consp acl2::x)))

    Theorem: vl-emodwirelistlist-fix-of-cons

    (defthm vl-emodwirelistlist-fix-of-cons
      (equal (vl-emodwirelistlist-fix (cons a x))
             (cons (vl-emodwirelist-fix a)
                   (vl-emodwirelistlist-fix x))))

    Theorem: len-of-vl-emodwirelistlist-fix

    (defthm len-of-vl-emodwirelistlist-fix
      (equal (len (vl-emodwirelistlist-fix acl2::x))
             (len acl2::x)))

    Theorem: vl-emodwirelistlist-fix-of-append

    (defthm vl-emodwirelistlist-fix-of-append
      (equal (vl-emodwirelistlist-fix (append std::a std::b))
             (append (vl-emodwirelistlist-fix std::a)
                     (vl-emodwirelistlist-fix std::b))))

    Theorem: vl-emodwirelistlist-fix-of-repeat

    (defthm vl-emodwirelistlist-fix-of-repeat
      (equal (vl-emodwirelistlist-fix (repeat acl2::n acl2::x))
             (repeat acl2::n (vl-emodwirelist-fix acl2::x))))

    Theorem: nth-of-vl-emodwirelistlist-fix

    (defthm nth-of-vl-emodwirelistlist-fix
      (equal (nth acl2::n
                  (vl-emodwirelistlist-fix acl2::x))
             (if (< (nfix acl2::n) (len acl2::x))
                 (vl-emodwirelist-fix (nth acl2::n acl2::x))
               nil)))

    Theorem: vl-emodwirelistlist-equiv-implies-vl-emodwirelistlist-equiv-append-1

    (defthm
     vl-emodwirelistlist-equiv-implies-vl-emodwirelistlist-equiv-append-1
     (implies (vl-emodwirelistlist-equiv acl2::x fty::x-equiv)
              (vl-emodwirelistlist-equiv (append acl2::x acl2::y)
                                         (append fty::x-equiv acl2::y)))
     :rule-classes (:congruence))

    Theorem: vl-emodwirelistlist-equiv-implies-vl-emodwirelistlist-equiv-append-2

    (defthm
     vl-emodwirelistlist-equiv-implies-vl-emodwirelistlist-equiv-append-2
     (implies (vl-emodwirelistlist-equiv acl2::y fty::y-equiv)
              (vl-emodwirelistlist-equiv (append acl2::x acl2::y)
                                         (append acl2::x fty::y-equiv)))
     :rule-classes (:congruence))

    Theorem: vl-emodwirelistlist-equiv-implies-vl-emodwirelistlist-equiv-nthcdr-2

    (defthm
     vl-emodwirelistlist-equiv-implies-vl-emodwirelistlist-equiv-nthcdr-2
     (implies (vl-emodwirelistlist-equiv acl2::l l-equiv)
              (vl-emodwirelistlist-equiv (nthcdr acl2::n acl2::l)
                                         (nthcdr acl2::n l-equiv)))
     :rule-classes (:congruence))

    Theorem: vl-emodwirelistlist-equiv-implies-vl-emodwirelistlist-equiv-take-2

    (defthm
     vl-emodwirelistlist-equiv-implies-vl-emodwirelistlist-equiv-take-2
     (implies (vl-emodwirelistlist-equiv acl2::l l-equiv)
              (vl-emodwirelistlist-equiv (take acl2::n acl2::l)
                                         (take acl2::n l-equiv)))
     :rule-classes (:congruence))