(svex-envlists-ovtestsubsetp x y) → *
Function:
(defun svex-envlists-ovtestsubsetp (x y) (declare (xargs :guard (and (svex-envlist-p x) (svex-envlist-p y)))) (let ((__function__ 'svex-envlists-ovtestsubsetp)) (declare (ignorable __function__)) (if (atom x) (atom y) (and (consp y) (ec-call (svex-envs-ovtestsubsetp (car x) (car y))) (svex-envlists-ovtestsubsetp (cdr x) (cdr y))))))
Theorem:
(defthm svex-envlists-ovtestsimilar-implies-iff-svex-envlists-ovtestsubsetp-1 (implies (svex-envlists-ovtestsimilar x x-equiv) (iff (svex-envlists-ovtestsubsetp x y) (svex-envlists-ovtestsubsetp x-equiv y))) :rule-classes (:congruence))
Theorem:
(defthm svex-envlists-ovtestsimilar-implies-iff-svex-envlists-ovtestsubsetp-2 (implies (svex-envlists-ovtestsimilar y y-equiv) (iff (svex-envlists-ovtestsubsetp x y) (svex-envlists-ovtestsubsetp x y-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svex-envlists-ovtestsubsetp-of-svex-envlist-fix-x (equal (svex-envlists-ovtestsubsetp (svex-envlist-fix x) y) (svex-envlists-ovtestsubsetp x y)))
Theorem:
(defthm svex-envlists-ovtestsubsetp-svex-envlist-equiv-congruence-on-x (implies (svex-envlist-equiv x x-equiv) (equal (svex-envlists-ovtestsubsetp x y) (svex-envlists-ovtestsubsetp x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm svex-envlists-ovtestsubsetp-of-svex-envlist-fix-y (equal (svex-envlists-ovtestsubsetp x (svex-envlist-fix y)) (svex-envlists-ovtestsubsetp x y)))
Theorem:
(defthm svex-envlists-ovtestsubsetp-svex-envlist-equiv-congruence-on-y (implies (svex-envlist-equiv y y-equiv) (equal (svex-envlists-ovtestsubsetp x y) (svex-envlists-ovtestsubsetp x y-equiv))) :rule-classes :congruence)