• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
        • Warnings
        • Primitives
        • Use-set
          • Typo-detection
          • Vl-wireinfo-alistp
          • Vl-annotate-vardecllist-with-wireinfo
          • Vl-useset-report-entry-p
          • Vl-print-useset-report-entry
          • Vl-mark-wires-for-module
          • Vl-split-useset-report
          • Vl-annotate-vardecl-with-wireinfo
          • Vl-mark-wires-for-modinstlist
          • Vl-mark-wires-for-modinst
          • Vl-mark-wires-for-gateinstlist
          • Vl-mark-wires-for-gateinst
          • Vl-mark-wires-for-plainarg
          • Vl-wireinfo-p
          • Vl-mark-wires-for-modulelist
          • Vl-vardecllist-impexp-names
          • Vl-report-totals
          • Vl-mark-wires-for-plainarglist
          • Vl-collect-unused-or-unset-wires
          • Vl-clean-up-warning-wires
          • Vl-print-useset-report-top
          • Vl-mark-wires-for-arguments
          • Vl-useset-report-p
            • Vl-useset-report-p-basics
            • Vl-star-names-of-warning-wires
            • Vl-design-use-set-report
            • Vl-module-impexp-names
            • Vl-make-initial-wireinfo-alist
            • Vl-mark-wire-used
            • Vl-mark-wire-set
            • Vl-mark-wires-used
            • Vl-mark-wires-for-assignment
            • Vl-mark-wires-for-assignlist
            • Vl-mark-wires-set
            • Vl-print-useset-report-full-aux
            • Vl-print-typo-alist
            • Vl-print-typo-possibilities
          • Syntax
          • Getting-started
          • Utilities
          • Loader
          • Transforms
          • Lint
          • Mlib
          • Server
          • Kit
          • Printer
          • Esim-vl
          • Well-formedness
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-useset-report-p

    Vl-useset-report-p-basics

    Basic theorems about vl-useset-report-p, generated by deflist.

    Definitions and Theorems

    Theorem: vl-useset-report-p-of-cons

    (defthm vl-useset-report-p-of-cons
      (equal (vl-useset-report-p (cons acl2::a acl2::x))
             (and (vl-useset-report-entry-p acl2::a)
                  (vl-useset-report-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-cdr-when-vl-useset-report-p

    (defthm vl-useset-report-p-of-cdr-when-vl-useset-report-p
      (implies (vl-useset-report-p (double-rewrite acl2::x))
               (vl-useset-report-p (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-when-not-consp

    (defthm vl-useset-report-p-when-not-consp
      (implies (not (consp acl2::x))
               (vl-useset-report-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-entry-p-of-car-when-vl-useset-report-p

    (defthm vl-useset-report-entry-p-of-car-when-vl-useset-report-p
      (implies (vl-useset-report-p acl2::x)
               (iff (vl-useset-report-entry-p (car acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-append

    (defthm vl-useset-report-p-of-append
      (equal (vl-useset-report-p (append acl2::a acl2::b))
             (and (vl-useset-report-p acl2::a)
                  (vl-useset-report-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-list-fix

    (defthm vl-useset-report-p-of-list-fix
      (equal (vl-useset-report-p (list-fix acl2::x))
             (vl-useset-report-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-sfix

    (defthm vl-useset-report-p-of-sfix
      (iff (vl-useset-report-p (sfix acl2::x))
           (or (vl-useset-report-p acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-insert

    (defthm vl-useset-report-p-of-insert
      (iff (vl-useset-report-p (insert acl2::a acl2::x))
           (and (vl-useset-report-p (sfix acl2::x))
                (vl-useset-report-entry-p acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-delete

    (defthm vl-useset-report-p-of-delete
      (implies (vl-useset-report-p acl2::x)
               (vl-useset-report-p (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-mergesort

    (defthm vl-useset-report-p-of-mergesort
      (iff (vl-useset-report-p (mergesort acl2::x))
           (vl-useset-report-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-union

    (defthm vl-useset-report-p-of-union
      (iff (vl-useset-report-p (union acl2::x acl2::y))
           (and (vl-useset-report-p (sfix acl2::x))
                (vl-useset-report-p (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-intersect-1

    (defthm vl-useset-report-p-of-intersect-1
      (implies (vl-useset-report-p acl2::x)
               (vl-useset-report-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-intersect-2

    (defthm vl-useset-report-p-of-intersect-2
      (implies (vl-useset-report-p acl2::y)
               (vl-useset-report-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-difference

    (defthm vl-useset-report-p-of-difference
      (implies (vl-useset-report-p acl2::x)
               (vl-useset-report-p (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-duplicated-members

    (defthm vl-useset-report-p-of-duplicated-members
      (implies (vl-useset-report-p acl2::x)
               (vl-useset-report-p (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-rev

    (defthm vl-useset-report-p-of-rev
      (equal (vl-useset-report-p (rev acl2::x))
             (vl-useset-report-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-rcons

    (defthm vl-useset-report-p-of-rcons
      (iff (vl-useset-report-p (acl2::rcons acl2::a acl2::x))
           (and (vl-useset-report-entry-p acl2::a)
                (vl-useset-report-p (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-entry-p-when-member-equal-of-vl-useset-report-p

    (defthm
       vl-useset-report-entry-p-when-member-equal-of-vl-useset-report-p
      (and (implies (and (member-equal acl2::a acl2::x)
                         (vl-useset-report-p acl2::x))
                    (vl-useset-report-entry-p acl2::a))
           (implies (and (vl-useset-report-p acl2::x)
                         (member-equal acl2::a acl2::x))
                    (vl-useset-report-entry-p acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-when-subsetp-equal

    (defthm vl-useset-report-p-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (vl-useset-report-p acl2::y))
                    (vl-useset-report-p acl2::x))
           (implies (and (vl-useset-report-p acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (vl-useset-report-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-set-equiv-congruence

    (defthm vl-useset-report-p-set-equiv-congruence
      (implies (set-equiv acl2::x acl2::y)
               (equal (vl-useset-report-p acl2::x)
                      (vl-useset-report-p acl2::y)))
      :rule-classes :congruence)

    Theorem: vl-useset-report-p-of-set-difference-equal

    (defthm vl-useset-report-p-of-set-difference-equal
      (implies
           (vl-useset-report-p acl2::x)
           (vl-useset-report-p (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-intersection-equal-1

    (defthm vl-useset-report-p-of-intersection-equal-1
     (implies (vl-useset-report-p (double-rewrite acl2::x))
              (vl-useset-report-p (intersection-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-intersection-equal-2

    (defthm vl-useset-report-p-of-intersection-equal-2
     (implies (vl-useset-report-p (double-rewrite acl2::y))
              (vl-useset-report-p (intersection-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-union-equal

    (defthm vl-useset-report-p-of-union-equal
      (equal (vl-useset-report-p (union-equal acl2::x acl2::y))
             (and (vl-useset-report-p (list-fix acl2::x))
                  (vl-useset-report-p (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-take

    (defthm vl-useset-report-p-of-take
      (implies (vl-useset-report-p (double-rewrite acl2::x))
               (iff (vl-useset-report-p (take acl2::n acl2::x))
                    (or (vl-useset-report-entry-p nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-repeat

    (defthm vl-useset-report-p-of-repeat
      (iff (vl-useset-report-p (repeat acl2::n acl2::x))
           (or (vl-useset-report-entry-p acl2::x)
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-entry-p-of-nth-when-vl-useset-report-p

    (defthm vl-useset-report-entry-p-of-nth-when-vl-useset-report-p
      (implies (vl-useset-report-p acl2::x)
               (iff (vl-useset-report-entry-p (nth acl2::n acl2::x))
                    (< (nfix acl2::n) (len acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-update-nth

    (defthm vl-useset-report-p-of-update-nth
     (implies
          (vl-useset-report-p (double-rewrite acl2::x))
          (iff (vl-useset-report-p (update-nth acl2::n acl2::y acl2::x))
               (and (vl-useset-report-entry-p acl2::y)
                    (or (<= (nfix acl2::n) (len acl2::x))
                        (vl-useset-report-entry-p nil)))))
     :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-butlast

    (defthm vl-useset-report-p-of-butlast
      (implies (vl-useset-report-p (double-rewrite acl2::x))
               (vl-useset-report-p (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-nthcdr

    (defthm vl-useset-report-p-of-nthcdr
      (implies (vl-useset-report-p (double-rewrite acl2::x))
               (vl-useset-report-p (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-last

    (defthm vl-useset-report-p-of-last
      (implies (vl-useset-report-p (double-rewrite acl2::x))
               (vl-useset-report-p (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-remove

    (defthm vl-useset-report-p-of-remove
      (implies (vl-useset-report-p acl2::x)
               (vl-useset-report-p (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-useset-report-p-of-revappend

    (defthm vl-useset-report-p-of-revappend
      (equal (vl-useset-report-p (revappend acl2::x acl2::y))
             (and (vl-useset-report-p (list-fix acl2::x))
                  (vl-useset-report-p acl2::y)))
      :rule-classes ((:rewrite)))