• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
        • Warnings
        • Primitives
        • Use-set
        • Syntax
        • Getting-started
        • Utilities
        • Loader
        • Transforms
          • Expression-sizing
          • Occform
          • Oprewrite
          • Expand-functions
          • Delayredux
          • Unparameterization
          • Caseelim
          • Split
          • Selresolve
          • Weirdint-elim
          • Vl-delta
          • Replicate-insts
          • Rangeresolve
          • Propagate
          • Clean-selects
          • Clean-params
          • Blankargs
          • Inline-mods
          • Expr-simp
          • Trunc
          • Always-top
          • Gatesplit
          • Gate-elim
            • Vl-gateinst-gate-elim
            • Vl-gateinstlist-gate-elim
            • Vl-modulelist-gate-elim-aux
            • Vl-module-gate-elim
            • Vl-add-portnames-to-plainargs
            • Vl-modulelist-gate-elim
            • Vl-design-gate-elim
            • Vl-primalist
              • Vl-primalist-p
              • Vl-primalist-fix
                • Vl-primalist-equiv
            • Expression-optimization
            • Elim-supplies
            • Wildelim
            • Drop-blankports
            • Clean-warnings
            • Addinstnames
            • Custom-transform-hooks
            • Annotate
            • Latchcode
            • Elim-unused-vars
            • Problem-modules
          • Lint
          • Mlib
          • Server
          • Kit
          • Printer
          • Esim-vl
          • Well-formedness
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-primalist

    Vl-primalist-fix

    (vl-primalist-fix x) is an ACL2::fty alist fixing function that follows the fix-keys strategy.

    Signature
    (vl-primalist-fix x) → fty::newx
    Arguments
    x — Guard (vl-primalist-p x).
    Returns
    fty::newx — Type (vl-primalist-p fty::newx).

    Note that in the execution this is just an inline identity function.

    Definitions and Theorems

    Function: vl-primalist-fix$inline

    (defun vl-primalist-fix$inline (x)
      (declare (xargs :guard (vl-primalist-p x)))
      (let ((__function__ 'vl-primalist-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 x
               (if (consp (car x))
                   (cons (cons (acl2::symbol-fix (caar x))
                               (vl-module-fix (cdar x)))
                         (vl-primalist-fix (cdr x)))
                 (vl-primalist-fix (cdr x))))
             :exec x)))

    Theorem: vl-primalist-p-of-vl-primalist-fix

    (defthm vl-primalist-p-of-vl-primalist-fix
      (b* ((fty::newx (vl-primalist-fix$inline x)))
        (vl-primalist-p fty::newx))
      :rule-classes :rewrite)

    Theorem: vl-primalist-fix-when-vl-primalist-p

    (defthm vl-primalist-fix-when-vl-primalist-p
      (implies (vl-primalist-p x)
               (equal (vl-primalist-fix x) x)))

    Function: vl-primalist-equiv$inline

    (defun vl-primalist-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (vl-primalist-p acl2::x)
                                  (vl-primalist-p acl2::y))))
      (equal (vl-primalist-fix acl2::x)
             (vl-primalist-fix acl2::y)))

    Theorem: vl-primalist-equiv-is-an-equivalence

    (defthm vl-primalist-equiv-is-an-equivalence
      (and (booleanp (vl-primalist-equiv x y))
           (vl-primalist-equiv x x)
           (implies (vl-primalist-equiv x y)
                    (vl-primalist-equiv y x))
           (implies (and (vl-primalist-equiv x y)
                         (vl-primalist-equiv y z))
                    (vl-primalist-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: vl-primalist-equiv-implies-equal-vl-primalist-fix-1

    (defthm vl-primalist-equiv-implies-equal-vl-primalist-fix-1
      (implies (vl-primalist-equiv acl2::x x-equiv)
               (equal (vl-primalist-fix acl2::x)
                      (vl-primalist-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-primalist-fix-under-vl-primalist-equiv

    (defthm vl-primalist-fix-under-vl-primalist-equiv
      (vl-primalist-equiv (vl-primalist-fix acl2::x)
                          acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-vl-primalist-fix-1-forward-to-vl-primalist-equiv

    (defthm equal-of-vl-primalist-fix-1-forward-to-vl-primalist-equiv
      (implies (equal (vl-primalist-fix acl2::x)
                      acl2::y)
               (vl-primalist-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-vl-primalist-fix-2-forward-to-vl-primalist-equiv

    (defthm equal-of-vl-primalist-fix-2-forward-to-vl-primalist-equiv
      (implies (equal acl2::x (vl-primalist-fix acl2::y))
               (vl-primalist-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-primalist-equiv-of-vl-primalist-fix-1-forward

    (defthm vl-primalist-equiv-of-vl-primalist-fix-1-forward
      (implies (vl-primalist-equiv (vl-primalist-fix acl2::x)
                                   acl2::y)
               (vl-primalist-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-primalist-equiv-of-vl-primalist-fix-2-forward

    (defthm vl-primalist-equiv-of-vl-primalist-fix-2-forward
      (implies (vl-primalist-equiv acl2::x (vl-primalist-fix acl2::y))
               (vl-primalist-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: cons-of-symbol-fix-k-under-vl-primalist-equiv

    (defthm cons-of-symbol-fix-k-under-vl-primalist-equiv
      (vl-primalist-equiv (cons (cons (acl2::symbol-fix acl2::k)
                                      acl2::v)
                                acl2::x)
                          (cons (cons acl2::k acl2::v) acl2::x)))

    Theorem: cons-symbol-equiv-congruence-on-k-under-vl-primalist-equiv

    (defthm cons-symbol-equiv-congruence-on-k-under-vl-primalist-equiv
      (implies
           (acl2::symbol-equiv acl2::k k-equiv)
           (vl-primalist-equiv (cons (cons acl2::k acl2::v) acl2::x)
                               (cons (cons k-equiv acl2::v) acl2::x)))
      :rule-classes :congruence)

    Theorem: cons-of-vl-module-fix-v-under-vl-primalist-equiv

    (defthm cons-of-vl-module-fix-v-under-vl-primalist-equiv
      (vl-primalist-equiv (cons (cons acl2::k (vl-module-fix acl2::v))
                                acl2::x)
                          (cons (cons acl2::k acl2::v) acl2::x)))

    Theorem: cons-vl-module-equiv-congruence-on-v-under-vl-primalist-equiv

    (defthm
          cons-vl-module-equiv-congruence-on-v-under-vl-primalist-equiv
      (implies
           (vl-module-equiv acl2::v v-equiv)
           (vl-primalist-equiv (cons (cons acl2::k acl2::v) acl2::x)
                               (cons (cons acl2::k v-equiv) acl2::x)))
      :rule-classes :congruence)

    Theorem: cons-of-vl-primalist-fix-y-under-vl-primalist-equiv

    (defthm cons-of-vl-primalist-fix-y-under-vl-primalist-equiv
      (vl-primalist-equiv (cons acl2::x (vl-primalist-fix acl2::y))
                          (cons acl2::x acl2::y)))

    Theorem: cons-vl-primalist-equiv-congruence-on-y-under-vl-primalist-equiv

    (defthm
       cons-vl-primalist-equiv-congruence-on-y-under-vl-primalist-equiv
      (implies (vl-primalist-equiv acl2::y y-equiv)
               (vl-primalist-equiv (cons acl2::x acl2::y)
                                   (cons acl2::x y-equiv)))
      :rule-classes :congruence)

    Theorem: vl-primalist-fix-of-acons

    (defthm vl-primalist-fix-of-acons
      (equal (vl-primalist-fix (cons (cons acl2::a acl2::b) x))
             (cons (cons (acl2::symbol-fix acl2::a)
                         (vl-module-fix acl2::b))
                   (vl-primalist-fix x))))

    Theorem: vl-primalist-fix-of-append

    (defthm vl-primalist-fix-of-append
      (equal (vl-primalist-fix (append std::a std::b))
             (append (vl-primalist-fix std::a)
                     (vl-primalist-fix std::b))))

    Theorem: consp-car-of-vl-primalist-fix

    (defthm consp-car-of-vl-primalist-fix
      (equal (consp (car (vl-primalist-fix x)))
             (consp (vl-primalist-fix x))))