(lhprobe/4vec-change-override x type) → new-x
Function:
(defun lhprobe/4vec-change-override (x type) (declare (xargs :guard (and (lhprobe/4vec-p x) (svar-overridetype-p type)))) (let ((__function__ 'lhprobe/4vec-change-override)) (declare (ignorable __function__)) (lhprobe/4vec-case x :4vec (4vec-fix x) :lhprobe (lhprobe-change-override x type))))
Theorem:
(defthm lhprobe/4vec-p-of-lhprobe/4vec-change-override (b* ((new-x (lhprobe/4vec-change-override x type))) (lhprobe/4vec-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm lhprobe/4vec-change-override-of-lhprobe/4vec-fix-x (equal (lhprobe/4vec-change-override (lhprobe/4vec-fix x) type) (lhprobe/4vec-change-override x type)))
Theorem:
(defthm lhprobe/4vec-change-override-lhprobe/4vec-equiv-congruence-on-x (implies (lhprobe/4vec-equiv x x-equiv) (equal (lhprobe/4vec-change-override x type) (lhprobe/4vec-change-override x-equiv type))) :rule-classes :congruence)
Theorem:
(defthm lhprobe/4vec-change-override-of-svar-overridetype-fix-type (equal (lhprobe/4vec-change-override x (svar-overridetype-fix type)) (lhprobe/4vec-change-override x type)))
Theorem:
(defthm lhprobe/4vec-change-override-svar-overridetype-equiv-congruence-on-type (implies (svar-overridetype-equiv type type-equiv) (equal (lhprobe/4vec-change-override x type) (lhprobe/4vec-change-override x type-equiv))) :rule-classes :congruence)