• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
      • Std/lists
      • Omaps
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
      • Std/osets
      • Std/io
      • Std/basic
        • Maybe-stringp
        • Maybe-natp
        • Two-nats-measure
        • Impossible
        • Bytep
        • Nat-list-measure
        • Maybe-posp
        • Nibblep
          • Nibble
            • Nibble-list
              • Nibble-list-fix
                • Nibble-list-equiv
                • Nibble-listp
              • Nibble-fix
              • Nibblep-additional-theorems
            • Nibblep-additional-theorems
          • Organize-symbols-by-pkg
          • Organize-symbols-by-name
          • Lnfix
          • Good-valuep
          • Streqv
          • Chareqv
          • Symbol-package-name-non-cl
          • Arith-equivs
          • Induction-schemes
          • Maybe-integerp
          • Char-fix
          • Pos-fix
          • Symbol-package-name-lst
          • Mbt$
          • Maybe-bitp
          • Good-pseudo-termp
          • Str-fix
          • Maybe-string-fix
          • Nonkeyword-listp
          • Lifix
          • Bfix
          • Std/basic/if*
          • Impliez
          • Tuplep
          • Std/basic/intern-in-package-of-symbol
          • Lbfix
          • Std/basic/symbol-name-lst
          • True
          • Std/basic/rfix
          • Std/basic/realfix
          • Std/basic/member-symbol-name
          • Std/basic/fix
          • False
          • Std/basic/nfix
          • Std/basic/ifix
        • Std/system
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Nibble-list

    Nibble-list-fix

    (nibble-list-fix x) is a usual fty list fixing function.

    Signature
    (nibble-list-fix x) → fty::newx
    Arguments
    x — Guard (nibble-listp x).
    Returns
    fty::newx — Type (nibble-listp fty::newx).

    In the logic, we apply nibble-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: nibble-list-fix$inline

    (defun nibble-list-fix$inline (x)
      (declare (xargs :guard (nibble-listp x)))
      (let ((__function__ 'nibble-list-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 nil
               (cons (nibble-fix (car x))
                     (nibble-list-fix (cdr x))))
             :exec x)))

    Theorem: nibble-listp-of-nibble-list-fix

    (defthm nibble-listp-of-nibble-list-fix
      (b* ((fty::newx (nibble-list-fix$inline x)))
        (nibble-listp fty::newx))
      :rule-classes :rewrite)

    Theorem: nibble-list-fix-when-nibble-listp

    (defthm nibble-list-fix-when-nibble-listp
      (implies (nibble-listp x)
               (equal (nibble-list-fix x) x)))

    Function: nibble-list-equiv$inline

    (defun nibble-list-equiv$inline (x y)
      (declare (xargs :guard (and (nibble-listp x)
                                  (nibble-listp y))))
      (equal (nibble-list-fix x)
             (nibble-list-fix y)))

    Theorem: nibble-list-equiv-is-an-equivalence

    (defthm nibble-list-equiv-is-an-equivalence
      (and (booleanp (nibble-list-equiv x y))
           (nibble-list-equiv x x)
           (implies (nibble-list-equiv x y)
                    (nibble-list-equiv y x))
           (implies (and (nibble-list-equiv x y)
                         (nibble-list-equiv y z))
                    (nibble-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: nibble-list-equiv-implies-equal-nibble-list-fix-1

    (defthm nibble-list-equiv-implies-equal-nibble-list-fix-1
      (implies (nibble-list-equiv x x-equiv)
               (equal (nibble-list-fix x)
                      (nibble-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: nibble-list-fix-under-nibble-list-equiv

    (defthm nibble-list-fix-under-nibble-list-equiv
      (nibble-list-equiv (nibble-list-fix x)
                         x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-nibble-list-fix-1-forward-to-nibble-list-equiv

    (defthm equal-of-nibble-list-fix-1-forward-to-nibble-list-equiv
      (implies (equal (nibble-list-fix x) y)
               (nibble-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-nibble-list-fix-2-forward-to-nibble-list-equiv

    (defthm equal-of-nibble-list-fix-2-forward-to-nibble-list-equiv
      (implies (equal x (nibble-list-fix y))
               (nibble-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: nibble-list-equiv-of-nibble-list-fix-1-forward

    (defthm nibble-list-equiv-of-nibble-list-fix-1-forward
      (implies (nibble-list-equiv (nibble-list-fix x)
                                  y)
               (nibble-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: nibble-list-equiv-of-nibble-list-fix-2-forward

    (defthm nibble-list-equiv-of-nibble-list-fix-2-forward
      (implies (nibble-list-equiv x (nibble-list-fix y))
               (nibble-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: car-of-nibble-list-fix-x-under-nibble-equiv

    (defthm car-of-nibble-list-fix-x-under-nibble-equiv
      (nibble-equiv (car (nibble-list-fix x))
                    (car x)))

    Theorem: car-nibble-list-equiv-congruence-on-x-under-nibble-equiv

    (defthm car-nibble-list-equiv-congruence-on-x-under-nibble-equiv
      (implies (nibble-list-equiv x x-equiv)
               (nibble-equiv (car x) (car x-equiv)))
      :rule-classes :congruence)

    Theorem: cdr-of-nibble-list-fix-x-under-nibble-list-equiv

    (defthm cdr-of-nibble-list-fix-x-under-nibble-list-equiv
      (nibble-list-equiv (cdr (nibble-list-fix x))
                         (cdr x)))

    Theorem: cdr-nibble-list-equiv-congruence-on-x-under-nibble-list-equiv

    (defthm
          cdr-nibble-list-equiv-congruence-on-x-under-nibble-list-equiv
      (implies (nibble-list-equiv x x-equiv)
               (nibble-list-equiv (cdr x)
                                  (cdr x-equiv)))
      :rule-classes :congruence)

    Theorem: cons-of-nibble-fix-x-under-nibble-list-equiv

    (defthm cons-of-nibble-fix-x-under-nibble-list-equiv
      (nibble-list-equiv (cons (nibble-fix x) y)
                         (cons x y)))

    Theorem: cons-nibble-equiv-congruence-on-x-under-nibble-list-equiv

    (defthm cons-nibble-equiv-congruence-on-x-under-nibble-list-equiv
      (implies (nibble-equiv x x-equiv)
               (nibble-list-equiv (cons x y)
                                  (cons x-equiv y)))
      :rule-classes :congruence)

    Theorem: cons-of-nibble-list-fix-y-under-nibble-list-equiv

    (defthm cons-of-nibble-list-fix-y-under-nibble-list-equiv
      (nibble-list-equiv (cons x (nibble-list-fix y))
                         (cons x y)))

    Theorem: cons-nibble-list-equiv-congruence-on-y-under-nibble-list-equiv

    (defthm
         cons-nibble-list-equiv-congruence-on-y-under-nibble-list-equiv
      (implies (nibble-list-equiv y y-equiv)
               (nibble-list-equiv (cons x y)
                                  (cons x y-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-nibble-list-fix

    (defthm consp-of-nibble-list-fix
      (equal (consp (nibble-list-fix x))
             (consp x)))

    Theorem: nibble-list-fix-under-iff

    (defthm nibble-list-fix-under-iff
      (iff (nibble-list-fix x) (consp x)))

    Theorem: nibble-list-fix-of-cons

    (defthm nibble-list-fix-of-cons
      (equal (nibble-list-fix (cons a x))
             (cons (nibble-fix a)
                   (nibble-list-fix x))))

    Theorem: len-of-nibble-list-fix

    (defthm len-of-nibble-list-fix
      (equal (len (nibble-list-fix x))
             (len x)))

    Theorem: nibble-list-fix-of-append

    (defthm nibble-list-fix-of-append
      (equal (nibble-list-fix (append std::a std::b))
             (append (nibble-list-fix std::a)
                     (nibble-list-fix std::b))))

    Theorem: nibble-list-fix-of-repeat

    (defthm nibble-list-fix-of-repeat
      (equal (nibble-list-fix (repeat n x))
             (repeat n (nibble-fix x))))

    Theorem: list-equiv-refines-nibble-list-equiv

    (defthm list-equiv-refines-nibble-list-equiv
      (implies (list-equiv x y)
               (nibble-list-equiv x y))
      :rule-classes :refinement)

    Theorem: nth-of-nibble-list-fix

    (defthm nth-of-nibble-list-fix
      (equal (nth n (nibble-list-fix x))
             (if (< (nfix n) (len x))
                 (nibble-fix (nth n x))
               nil)))

    Theorem: nibble-list-equiv-implies-nibble-list-equiv-append-1

    (defthm nibble-list-equiv-implies-nibble-list-equiv-append-1
      (implies (nibble-list-equiv x fty::x-equiv)
               (nibble-list-equiv (append x y)
                                  (append fty::x-equiv y)))
      :rule-classes (:congruence))

    Theorem: nibble-list-equiv-implies-nibble-list-equiv-append-2

    (defthm nibble-list-equiv-implies-nibble-list-equiv-append-2
      (implies (nibble-list-equiv y fty::y-equiv)
               (nibble-list-equiv (append x y)
                                  (append x fty::y-equiv)))
      :rule-classes (:congruence))

    Theorem: nibble-list-equiv-implies-nibble-list-equiv-nthcdr-2

    (defthm nibble-list-equiv-implies-nibble-list-equiv-nthcdr-2
      (implies (nibble-list-equiv l l-equiv)
               (nibble-list-equiv (nthcdr n l)
                                  (nthcdr n l-equiv)))
      :rule-classes (:congruence))

    Theorem: nibble-list-equiv-implies-nibble-list-equiv-take-2

    (defthm nibble-list-equiv-implies-nibble-list-equiv-take-2
      (implies (nibble-list-equiv l l-equiv)
               (nibble-list-equiv (take n l)
                                  (take n l-equiv)))
      :rule-classes (:congruence))