Fixing function for comp-db-entry structures.
(comp-db-entry-fix x) → new-x
Function:
(defun comp-db-entry-fix$inline (x) (declare (xargs :guard (comp-db-entryp x))) (mbe :logic (b* ((exec (str-fix (cdr (std::da-nth 0 x)))) (directory (str-fix (cdr (std::da-nth 1 x)))) (output (acl2::string-option-fix (cdr (std::da-nth 2 x)))) (arguments (comp-db-arg-list-fix (cdr (std::da-nth 3 x))))) (list (cons 'exec exec) (cons 'directory directory) (cons 'output output) (cons 'arguments arguments))) :exec x))
Theorem:
(defthm comp-db-entryp-of-comp-db-entry-fix (b* ((new-x (comp-db-entry-fix$inline x))) (comp-db-entryp new-x)) :rule-classes :rewrite)
Theorem:
(defthm comp-db-entry-fix-when-comp-db-entryp (implies (comp-db-entryp x) (equal (comp-db-entry-fix x) x)))
Function:
(defun comp-db-entry-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (comp-db-entryp acl2::x) (comp-db-entryp acl2::y)))) (equal (comp-db-entry-fix acl2::x) (comp-db-entry-fix acl2::y)))
Theorem:
(defthm comp-db-entry-equiv-is-an-equivalence (and (booleanp (comp-db-entry-equiv x y)) (comp-db-entry-equiv x x) (implies (comp-db-entry-equiv x y) (comp-db-entry-equiv y x)) (implies (and (comp-db-entry-equiv x y) (comp-db-entry-equiv y z)) (comp-db-entry-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm comp-db-entry-equiv-implies-equal-comp-db-entry-fix-1 (implies (comp-db-entry-equiv acl2::x x-equiv) (equal (comp-db-entry-fix acl2::x) (comp-db-entry-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm comp-db-entry-fix-under-comp-db-entry-equiv (comp-db-entry-equiv (comp-db-entry-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-comp-db-entry-fix-1-forward-to-comp-db-entry-equiv (implies (equal (comp-db-entry-fix acl2::x) acl2::y) (comp-db-entry-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-comp-db-entry-fix-2-forward-to-comp-db-entry-equiv (implies (equal acl2::x (comp-db-entry-fix acl2::y)) (comp-db-entry-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm comp-db-entry-equiv-of-comp-db-entry-fix-1-forward (implies (comp-db-entry-equiv (comp-db-entry-fix acl2::x) acl2::y) (comp-db-entry-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm comp-db-entry-equiv-of-comp-db-entry-fix-2-forward (implies (comp-db-entry-equiv acl2::x (comp-db-entry-fix acl2::y)) (comp-db-entry-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)