• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
          • Directed-untranslate
          • Include-book-paths
          • Ubi
          • Numbered-names
          • Digits-any-base
          • Context-message-pair
          • With-auto-termination
          • Make-termination-theorem
          • Theorems-about-true-list-lists
          • Checkpoint-list
          • Sublis-expr+
          • Integers-from-to
          • Prove$
          • Defthm<w
          • System-utilities-non-built-in
          • Integer-range-fix
          • Minimize-ruler-extenders
          • Add-const-to-untranslate-preprocess
          • Unsigned-byte-fix
          • Signed-byte-fix
          • Defthmr
          • Paired-names
          • Unsigned-byte-list-fix
          • Signed-byte-list-fix
          • Show-books
          • Skip-in-book
          • Typed-tuplep
          • List-utilities
          • Checkpoint-list-pretty
          • Defunt
          • Keyword-value-list-to-alist
          • Magic-macroexpand
          • Top-command-number-fn
          • Bits-as-digits-in-base-2
          • Show-checkpoint-list
          • Ubyte11s-as-digits-in-base-2048
          • Named-formulas
          • Bytes-as-digits-in-base-256
          • String-utilities
          • Make-keyword-value-list-from-keys-and-value
          • Defmacroq
          • Integer-range-listp
          • Apply-fn-if-known
          • Trans-eval-error-triple
          • Checkpoint-info-list
          • Previous-subsumer-hints
          • Fms!-lst
          • Zp-listp
          • Trans-eval-state
          • Injections
          • Doublets-to-alist
          • Theorems-about-osets
          • Typed-list-utilities
          • Message-utilities
          • Book-runes-alist
          • User-interface
          • Bits/ubyte11s-digit-grouping
          • Bits/bytes-digit-grouping
          • Subsetp-eq-linear
          • Oset-utilities
            • List-in
              • List-in-basics
              • List-notin
              • Typed-osets
            • Strict-merge-sort-<
            • Miscellaneous-enumerations
            • Maybe-unquote
            • Thm<w
            • Defthmd<w
            • Io-utilities
          • Set
          • C
          • Soft
          • Bv
          • Imp-language
          • Ethereum
          • Event-macros
          • Java
          • Riscv
          • Bitcoin
          • Zcash
          • Yul
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Axe
          • Lists-light
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • List-in

    List-in-basics

    Basic theorems about list-in, generated by std::deflist.

    Definitions and Theorems

    Theorem: list-in-of-cons

    (defthm list-in-of-cons
      (equal (list-in (cons a x) set)
             (and (in a set) (list-in x set)))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-cdr-when-list-in

    (defthm list-in-of-cdr-when-list-in
      (implies (list-in (double-rewrite x) set)
               (list-in (cdr x) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-when-not-consp

    (defthm list-in-when-not-consp
      (implies (not (consp x))
               (list-in x set))
      :rule-classes ((:rewrite)))

    Theorem: in-of-car-when-list-in

    (defthm in-of-car-when-list-in
      (implies (list-in x set)
               (iff (in (car x) set)
                    (or (consp x) (in nil set))))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-append

    (defthm list-in-of-append
      (equal (list-in (append a b) set)
             (and (list-in a set) (list-in b set)))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-list-fix

    (defthm list-in-of-list-fix
      (equal (list-in (acl2::list-fix x) set)
             (list-in x set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-sfix

    (defthm list-in-of-sfix
      (iff (list-in (sfix x) set)
           (or (list-in x set) (not (setp x))))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-insert

    (defthm list-in-of-insert
      (iff (list-in (insert a x) set)
           (and (list-in (sfix x) set) (in a set)))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-delete

    (defthm list-in-of-delete
      (implies (list-in x set)
               (list-in (delete k x) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-mergesort

    (defthm list-in-of-mergesort
      (iff (list-in (mergesort x) set)
           (list-in (acl2::list-fix x) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-union

    (defthm list-in-of-union
      (iff (list-in (union x y) set)
           (and (list-in (sfix x) set)
                (list-in (sfix y) set)))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-intersect-1

    (defthm list-in-of-intersect-1
      (implies (list-in x set)
               (list-in (intersect x y) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-intersect-2

    (defthm list-in-of-intersect-2
      (implies (list-in y set)
               (list-in (intersect x y) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-difference

    (defthm list-in-of-difference
      (implies (list-in x set)
               (list-in (difference x y) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-duplicated-members

    (defthm list-in-of-duplicated-members
      (implies (list-in x set)
               (list-in (acl2::duplicated-members x)
                        set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-rev

    (defthm list-in-of-rev
      (equal (list-in (acl2::rev x) set)
             (list-in (acl2::list-fix x) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-rcons

    (defthm list-in-of-rcons
      (iff (list-in (acl2::rcons a x) set)
           (and (in a set)
                (list-in (acl2::list-fix x) set)))
      :rule-classes ((:rewrite)))

    Theorem: in-when-member-equal-of-list-in

    (defthm in-when-member-equal-of-list-in
      (and (implies (and (member-equal a x) (list-in x set))
                    (in a set))
           (implies (and (list-in x set) (member-equal a x))
                    (in a set)))
      :rule-classes ((:rewrite)))

    Theorem: list-in-when-subsetp-equal

    (defthm list-in-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (list-in y set))
                    (list-in x set))
           (implies (and (list-in y set)
                         (subsetp-equal x y))
                    (list-in x set)))
      :rule-classes ((:rewrite)))

    Theorem: list-in-set-equiv-congruence

    (defthm list-in-set-equiv-congruence
      (implies (acl2::set-equiv x y)
               (equal (list-in x set) (list-in y set)))
      :rule-classes :congruence)

    Theorem: list-in-of-set-difference-equal

    (defthm list-in-of-set-difference-equal
      (implies (list-in x set)
               (list-in (set-difference-equal x y)
                        set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-intersection-equal-1

    (defthm list-in-of-intersection-equal-1
      (implies (list-in (double-rewrite x) set)
               (list-in (intersection-equal x y) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-intersection-equal-2

    (defthm list-in-of-intersection-equal-2
      (implies (list-in (double-rewrite y) set)
               (list-in (intersection-equal x y) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-union-equal

    (defthm list-in-of-union-equal
      (equal (list-in (union-equal x y) set)
             (and (list-in (acl2::list-fix x) set)
                  (list-in (double-rewrite y) set)))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-take

    (defthm list-in-of-take
      (implies (list-in (double-rewrite x) set)
               (iff (list-in (take n x) set)
                    (or (in nil set)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-repeat

    (defthm list-in-of-repeat
      (iff (list-in (acl2::repeat n x) set)
           (or (in x set) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: in-of-nth-when-list-in

    (defthm in-of-nth-when-list-in
      (implies (and (list-in x set)
                    (< (nfix n) (len x)))
               (in (nth n x) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-update-nth

    (defthm list-in-of-update-nth
      (implies (list-in (double-rewrite x) set)
               (iff (list-in (update-nth n y x) set)
                    (and (in y set)
                         (or (<= (nfix n) (len x))
                             (in nil set)))))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-butlast

    (defthm list-in-of-butlast
      (implies (list-in (double-rewrite x) set)
               (list-in (butlast x n) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-nthcdr

    (defthm list-in-of-nthcdr
      (implies (list-in (double-rewrite x) set)
               (list-in (nthcdr n x) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-last

    (defthm list-in-of-last
      (implies (list-in (double-rewrite x) set)
               (list-in (last x) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-remove

    (defthm list-in-of-remove
      (implies (list-in x set)
               (list-in (remove a x) set))
      :rule-classes ((:rewrite)))

    Theorem: list-in-of-revappend

    (defthm list-in-of-revappend
      (equal (list-in (revappend x y) set)
             (and (list-in (acl2::list-fix x) set)
                  (list-in y set)))
      :rule-classes ((:rewrite)))