Basic equivalence relation for uid structures.
Function:
(defun uid-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (uidp acl2::x) (uidp acl2::y)))) (equal (uid-fix acl2::x) (uid-fix acl2::y)))
Theorem:
(defthm uid-equiv-is-an-equivalence (and (booleanp (uid-equiv x y)) (uid-equiv x x) (implies (uid-equiv x y) (uid-equiv y x)) (implies (and (uid-equiv x y) (uid-equiv y z)) (uid-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm uid-equiv-implies-equal-uid-fix-1 (implies (uid-equiv acl2::x x-equiv) (equal (uid-fix acl2::x) (uid-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm uid-fix-under-uid-equiv (uid-equiv (uid-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-uid-fix-1-forward-to-uid-equiv (implies (equal (uid-fix acl2::x) acl2::y) (uid-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-uid-fix-2-forward-to-uid-equiv (implies (equal acl2::x (uid-fix acl2::y)) (uid-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm uid-equiv-of-uid-fix-1-forward (implies (uid-equiv (uid-fix acl2::x) acl2::y) (uid-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm uid-equiv-of-uid-fix-2-forward (implies (uid-equiv acl2::x (uid-fix acl2::y)) (uid-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)