Function:
(defun escape-standardp (escape) (declare (xargs :guard (escapep escape))) (declare (ignorable escape)) (let ((__function__ 'escape-standardp)) (declare (ignorable __function__)) (escape-case escape :simple (simple-escape-standardp (escape-simple->escape escape)) :oct t :hex t :univ t)))
Theorem:
(defthm booleanp-of-escape-standardp (b* ((fty::result (escape-standardp escape))) (booleanp fty::result)) :rule-classes :rewrite)
Theorem:
(defthm escape-standardp-of-escape-fix-escape (equal (escape-standardp (escape-fix escape)) (escape-standardp escape)))
Theorem:
(defthm escape-standardp-escape-equiv-congruence-on-escape (implies (escape-equiv escape escape-equiv) (equal (escape-standardp escape) (escape-standardp escape-equiv))) :rule-classes :congruence)