(expr-list-replace-field-access c$::expr-list original
linkage new1 new2 split-members)
→
fty::resultTheorem:
(defthm expr-list-replace-field-access-type-prescription (true-listp (expr-list-replace-field-access c$::expr-list original linkage new1 new2 split-members)) :rule-classes :type-prescription)
Theorem:
(defthm expr-list-replace-field-access-when-atom (implies (atom c$::expr-list) (equal (expr-list-replace-field-access c$::expr-list original linkage new1 new2 split-members) nil)))
Theorem:
(defthm expr-list-replace-field-access-of-cons (equal (expr-list-replace-field-access (cons c$::expr c$::expr-list) original linkage new1 new2 split-members) (cons (expr-replace-field-access c$::expr original linkage new1 new2 split-members) (expr-list-replace-field-access c$::expr-list original linkage new1 new2 split-members))))
Theorem:
(defthm expr-list-replace-field-access-of-append (equal (expr-list-replace-field-access (append acl2::x acl2::y) original linkage new1 new2 split-members) (append (expr-list-replace-field-access acl2::x original linkage new1 new2 split-members) (expr-list-replace-field-access acl2::y original linkage new1 new2 split-members))))
Theorem:
(defthm consp-of-expr-list-replace-field-access (equal (consp (expr-list-replace-field-access c$::expr-list original linkage new1 new2 split-members)) (consp c$::expr-list)))
Theorem:
(defthm len-of-expr-list-replace-field-access (equal (len (expr-list-replace-field-access c$::expr-list original linkage new1 new2 split-members)) (len c$::expr-list)))
Theorem:
(defthm nth-of-expr-list-replace-field-access (equal (nth acl2::n (expr-list-replace-field-access c$::expr-list original linkage new1 new2 split-members)) (if (< (nfix acl2::n) (len c$::expr-list)) (expr-replace-field-access (nth acl2::n c$::expr-list) original linkage new1 new2 split-members) nil)))
Theorem:
(defthm expr-list-replace-field-access-of-revappend (equal (expr-list-replace-field-access (revappend acl2::x acl2::y) original linkage new1 new2 split-members) (revappend (expr-list-replace-field-access acl2::x original linkage new1 new2 split-members) (expr-list-replace-field-access acl2::y original linkage new1 new2 split-members))))
Theorem:
(defthm expr-list-replace-field-access-of-reverse (equal (expr-list-replace-field-access (reverse c$::expr-list) original linkage new1 new2 split-members) (reverse (expr-list-replace-field-access c$::expr-list original linkage new1 new2 split-members))))