(attrib-spec-list-replace-field-access
c$::attrib-spec-list original
linkage new1 new2 split-members)
→
fty::resultTheorem:
(defthm attrib-spec-list-replace-field-access-type-prescription (true-listp (attrib-spec-list-replace-field-access c$::attrib-spec-list original linkage new1 new2 split-members)) :rule-classes :type-prescription)
Theorem:
(defthm attrib-spec-list-replace-field-access-when-atom (implies (atom c$::attrib-spec-list) (equal (attrib-spec-list-replace-field-access c$::attrib-spec-list original linkage new1 new2 split-members) nil)))
Theorem:
(defthm attrib-spec-list-replace-field-access-of-cons (equal (attrib-spec-list-replace-field-access (cons c$::attrib-spec c$::attrib-spec-list) original linkage new1 new2 split-members) (cons (attrib-spec-replace-field-access c$::attrib-spec original linkage new1 new2 split-members) (attrib-spec-list-replace-field-access c$::attrib-spec-list original linkage new1 new2 split-members))))
Theorem:
(defthm attrib-spec-list-replace-field-access-of-append (equal (attrib-spec-list-replace-field-access (append acl2::x acl2::y) original linkage new1 new2 split-members) (append (attrib-spec-list-replace-field-access acl2::x original linkage new1 new2 split-members) (attrib-spec-list-replace-field-access acl2::y original linkage new1 new2 split-members))))
Theorem:
(defthm consp-of-attrib-spec-list-replace-field-access (equal (consp (attrib-spec-list-replace-field-access c$::attrib-spec-list original linkage new1 new2 split-members)) (consp c$::attrib-spec-list)))
Theorem:
(defthm len-of-attrib-spec-list-replace-field-access (equal (len (attrib-spec-list-replace-field-access c$::attrib-spec-list original linkage new1 new2 split-members)) (len c$::attrib-spec-list)))
Theorem:
(defthm nth-of-attrib-spec-list-replace-field-access (equal (nth acl2::n (attrib-spec-list-replace-field-access c$::attrib-spec-list original linkage new1 new2 split-members)) (if (< (nfix acl2::n) (len c$::attrib-spec-list)) (attrib-spec-replace-field-access (nth acl2::n c$::attrib-spec-list) original linkage new1 new2 split-members) nil)))
Theorem:
(defthm attrib-spec-list-replace-field-access-of-revappend (equal (attrib-spec-list-replace-field-access (revappend acl2::x acl2::y) original linkage new1 new2 split-members) (revappend (attrib-spec-list-replace-field-access acl2::x original linkage new1 new2 split-members) (attrib-spec-list-replace-field-access acl2::y original linkage new1 new2 split-members))))
Theorem:
(defthm attrib-spec-list-replace-field-access-of-reverse (equal (attrib-spec-list-replace-field-access (reverse c$::attrib-spec-list) original linkage new1 new2 split-members) (reverse (attrib-spec-list-replace-field-access c$::attrib-spec-list original linkage new1 new2 split-members))))