(enumer-list-replace-field-access c$::enumer-list original
linkage new1 new2 split-members)
→
fty::resultTheorem:
(defthm enumer-list-replace-field-access-type-prescription (true-listp (enumer-list-replace-field-access c$::enumer-list original linkage new1 new2 split-members)) :rule-classes :type-prescription)
Theorem:
(defthm enumer-list-replace-field-access-when-atom (implies (atom c$::enumer-list) (equal (enumer-list-replace-field-access c$::enumer-list original linkage new1 new2 split-members) nil)))
Theorem:
(defthm enumer-list-replace-field-access-of-cons (equal (enumer-list-replace-field-access (cons enumer c$::enumer-list) original linkage new1 new2 split-members) (cons (enumer-replace-field-access enumer original linkage new1 new2 split-members) (enumer-list-replace-field-access c$::enumer-list original linkage new1 new2 split-members))))
Theorem:
(defthm enumer-list-replace-field-access-of-append (equal (enumer-list-replace-field-access (append acl2::x acl2::y) original linkage new1 new2 split-members) (append (enumer-list-replace-field-access acl2::x original linkage new1 new2 split-members) (enumer-list-replace-field-access acl2::y original linkage new1 new2 split-members))))
Theorem:
(defthm consp-of-enumer-list-replace-field-access (equal (consp (enumer-list-replace-field-access c$::enumer-list original linkage new1 new2 split-members)) (consp c$::enumer-list)))
Theorem:
(defthm len-of-enumer-list-replace-field-access (equal (len (enumer-list-replace-field-access c$::enumer-list original linkage new1 new2 split-members)) (len c$::enumer-list)))
Theorem:
(defthm nth-of-enumer-list-replace-field-access (equal (nth acl2::n (enumer-list-replace-field-access c$::enumer-list original linkage new1 new2 split-members)) (if (< (nfix acl2::n) (len c$::enumer-list)) (enumer-replace-field-access (nth acl2::n c$::enumer-list) original linkage new1 new2 split-members) nil)))
Theorem:
(defthm enumer-list-replace-field-access-of-revappend (equal (enumer-list-replace-field-access (revappend acl2::x acl2::y) original linkage new1 new2 split-members) (revappend (enumer-list-replace-field-access acl2::x original linkage new1 new2 split-members) (enumer-list-replace-field-access acl2::y original linkage new1 new2 split-members))))
Theorem:
(defthm enumer-list-replace-field-access-of-reverse (equal (enumer-list-replace-field-access (reverse c$::enumer-list) original linkage new1 new2 split-members) (reverse (enumer-list-replace-field-access c$::enumer-list original linkage new1 new2 split-members))))