Update the |X86ISA|::|IMPLICIT-SUPERVISOR-ACCESS| field of a tlb-key bit structure.
Function:
(defun !tlb-key->implicit-supervisor-access$inline (implicit-supervisor-access x) (declare (xargs :guard (and (bitp implicit-supervisor-access) (tlb-key-p x)))) (mbe :logic (b* ((implicit-supervisor-access (mbe :logic (bfix implicit-supervisor-access) :exec implicit-supervisor-access)) (x (tlb-key-fix x))) (part-install implicit-supervisor-access x :width 1 :low 5)) :exec (the (unsigned-byte 46) (logior (the (unsigned-byte 46) (logand (the (unsigned-byte 46) x) (the (signed-byte 7) -33))) (the (unsigned-byte 6) (ash (the (unsigned-byte 1) implicit-supervisor-access) 5))))))
Theorem:
(defthm tlb-key-p-of-!tlb-key->implicit-supervisor-access (b* ((new-x (!tlb-key->implicit-supervisor-access$inline implicit-supervisor-access x))) (tlb-key-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !tlb-key->implicit-supervisor-access$inline-of-bfix-implicit-supervisor-access (equal (!tlb-key->implicit-supervisor-access$inline (bfix implicit-supervisor-access) x) (!tlb-key->implicit-supervisor-access$inline implicit-supervisor-access x)))
Theorem:
(defthm !tlb-key->implicit-supervisor-access$inline-bit-equiv-congruence-on-implicit-supervisor-access (implies (bit-equiv implicit-supervisor-access implicit-supervisor-access-equiv) (equal (!tlb-key->implicit-supervisor-access$inline implicit-supervisor-access x) (!tlb-key->implicit-supervisor-access$inline implicit-supervisor-access-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !tlb-key->implicit-supervisor-access$inline-of-tlb-key-fix-x (equal (!tlb-key->implicit-supervisor-access$inline implicit-supervisor-access (tlb-key-fix x)) (!tlb-key->implicit-supervisor-access$inline implicit-supervisor-access x)))
Theorem:
(defthm !tlb-key->implicit-supervisor-access$inline-tlb-key-equiv-congruence-on-x (implies (tlb-key-equiv x x-equiv) (equal (!tlb-key->implicit-supervisor-access$inline implicit-supervisor-access x) (!tlb-key->implicit-supervisor-access$inline implicit-supervisor-access x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !tlb-key->implicit-supervisor-access-is-tlb-key (equal (!tlb-key->implicit-supervisor-access implicit-supervisor-access x) (change-tlb-key x :implicit-supervisor-access implicit-supervisor-access)))
Theorem:
(defthm tlb-key->implicit-supervisor-access-of-!tlb-key->implicit-supervisor-access (b* ((?new-x (!tlb-key->implicit-supervisor-access$inline implicit-supervisor-access x))) (equal (tlb-key->implicit-supervisor-access new-x) (bfix implicit-supervisor-access))))
Theorem:
(defthm !tlb-key->implicit-supervisor-access-equiv-under-mask (b* ((?new-x (!tlb-key->implicit-supervisor-access$inline implicit-supervisor-access x))) (tlb-key-equiv-under-mask new-x x -33)))