• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
      • B*
      • Defunc
      • Fty
        • Deftagsum
        • Defprod
        • Defflexsum
        • Defbitstruct
        • Deflist
        • Defalist
        • Defbyte
        • Defresult
        • Deffixequiv
        • Deffixtype
        • Defoption
        • Fty-discipline
        • Fold
        • Specific-types
        • Fty-extensions
        • Defsubtype
        • Deftypes
        • Defset
        • Defflatsum
        • Deflist-of-len
        • Defomap
        • Defbytelist
        • Fty::basetypes
        • Defvisitors
        • Deffixtype-alias
        • Deffixequiv-sk
        • Defunit
        • Multicase
        • Deffixequiv-mutual
        • Fty::baselists
          • Symbol-list
          • True-list-list
          • Nat-list
          • Rational-list
          • Integer-list
          • Boolean-list
          • ACL2-number-list
            • ACL2-number-list-fix
              • ACL2-number-list-equiv
          • Def-enumcase
          • Defmap
        • Apt
        • Std/util
        • Defdata
        • Defrstobj
        • Seq
        • Match-tree
        • Defrstobj
        • With-supporters
        • Def-partial-measure
        • Template-subst
        • Soft
        • Defthm-domain
        • Event-macros
        • Def-universal-equiv
        • Def-saved-obligs
        • With-supporters-after
        • Definec
        • Sig
        • Outer-local
        • Data-structures
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • ACL2-number-list

    ACL2-number-list-fix

    (acl2-number-list-fix x) is a usual fty list fixing function.

    Signature
    (acl2-number-list-fix x) → fty::newx
    Arguments
    x — Guard (acl2-number-listp x).
    Returns
    fty::newx — Type (acl2-number-listp fty::newx).

    In the logic, we apply fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: acl2-number-list-fix$inline

    (defun acl2-number-list-fix$inline (x)
      (declare (xargs :guard (acl2-number-listp x)))
      (let ((__function__ 'acl2-number-list-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 nil
               (cons (fix (car x))
                     (acl2-number-list-fix (cdr x))))
             :exec x)))

    Theorem: acl2-number-listp-of-acl2-number-list-fix

    (defthm acl2-number-listp-of-acl2-number-list-fix
      (b* ((fty::newx (acl2-number-list-fix$inline x)))
        (acl2-number-listp fty::newx))
      :rule-classes :rewrite)

    Theorem: acl2-number-list-fix-when-acl2-number-listp

    (defthm acl2-number-list-fix-when-acl2-number-listp
      (implies (acl2-number-listp x)
               (equal (acl2-number-list-fix x) x)))

    Function: acl2-number-list-equiv$inline

    (defun acl2-number-list-equiv$inline (x y)
      (declare (xargs :guard (and (acl2-number-listp x)
                                  (acl2-number-listp y))))
      (equal (acl2-number-list-fix x)
             (acl2-number-list-fix y)))

    Theorem: acl2-number-list-equiv-is-an-equivalence

    (defthm acl2-number-list-equiv-is-an-equivalence
      (and (booleanp (acl2-number-list-equiv x y))
           (acl2-number-list-equiv x x)
           (implies (acl2-number-list-equiv x y)
                    (acl2-number-list-equiv y x))
           (implies (and (acl2-number-list-equiv x y)
                         (acl2-number-list-equiv y z))
                    (acl2-number-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: acl2-number-list-equiv-implies-equal-acl2-number-list-fix-1

    (defthm acl2-number-list-equiv-implies-equal-acl2-number-list-fix-1
      (implies (acl2-number-list-equiv x x-equiv)
               (equal (acl2-number-list-fix x)
                      (acl2-number-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: acl2-number-list-fix-under-acl2-number-list-equiv

    (defthm acl2-number-list-fix-under-acl2-number-list-equiv
      (acl2-number-list-equiv (acl2-number-list-fix x)
                              x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-acl2-number-list-fix-1-forward-to-acl2-number-list-equiv

    (defthm
      equal-of-acl2-number-list-fix-1-forward-to-acl2-number-list-equiv
      (implies (equal (acl2-number-list-fix x) y)
               (acl2-number-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-acl2-number-list-fix-2-forward-to-acl2-number-list-equiv

    (defthm
      equal-of-acl2-number-list-fix-2-forward-to-acl2-number-list-equiv
      (implies (equal x (acl2-number-list-fix y))
               (acl2-number-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: acl2-number-list-equiv-of-acl2-number-list-fix-1-forward

    (defthm acl2-number-list-equiv-of-acl2-number-list-fix-1-forward
      (implies (acl2-number-list-equiv (acl2-number-list-fix x)
                                       y)
               (acl2-number-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: acl2-number-list-equiv-of-acl2-number-list-fix-2-forward

    (defthm acl2-number-list-equiv-of-acl2-number-list-fix-2-forward
      (implies (acl2-number-list-equiv x (acl2-number-list-fix y))
               (acl2-number-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: car-of-acl2-number-list-fix-x-under-number-equiv

    (defthm car-of-acl2-number-list-fix-x-under-number-equiv
      (number-equiv (car (acl2-number-list-fix x))
                    (car x)))

    Theorem: car-acl2-number-list-equiv-congruence-on-x-under-number-equiv

    (defthm
          car-acl2-number-list-equiv-congruence-on-x-under-number-equiv
      (implies (acl2-number-list-equiv x x-equiv)
               (number-equiv (car x) (car x-equiv)))
      :rule-classes :congruence)

    Theorem: cdr-of-acl2-number-list-fix-x-under-acl2-number-list-equiv

    (defthm cdr-of-acl2-number-list-fix-x-under-acl2-number-list-equiv
      (acl2-number-list-equiv (cdr (acl2-number-list-fix x))
                              (cdr x)))

    Theorem: cdr-acl2-number-list-equiv-congruence-on-x-under-acl2-number-list-equiv

    (defthm
     cdr-acl2-number-list-equiv-congruence-on-x-under-acl2-number-list-equiv
     (implies (acl2-number-list-equiv x x-equiv)
              (acl2-number-list-equiv (cdr x)
                                      (cdr x-equiv)))
     :rule-classes :congruence)

    Theorem: cons-of-fix-x-under-acl2-number-list-equiv

    (defthm cons-of-fix-x-under-acl2-number-list-equiv
      (acl2-number-list-equiv (cons (fix x) y)
                              (cons x y)))

    Theorem: cons-number-equiv-congruence-on-x-under-acl2-number-list-equiv

    (defthm
         cons-number-equiv-congruence-on-x-under-acl2-number-list-equiv
      (implies (number-equiv x x-equiv)
               (acl2-number-list-equiv (cons x y)
                                       (cons x-equiv y)))
      :rule-classes :congruence)

    Theorem: cons-of-acl2-number-list-fix-y-under-acl2-number-list-equiv

    (defthm cons-of-acl2-number-list-fix-y-under-acl2-number-list-equiv
      (acl2-number-list-equiv (cons x (acl2-number-list-fix y))
                              (cons x y)))

    Theorem: cons-acl2-number-list-equiv-congruence-on-y-under-acl2-number-list-equiv

    (defthm
     cons-acl2-number-list-equiv-congruence-on-y-under-acl2-number-list-equiv
     (implies (acl2-number-list-equiv y y-equiv)
              (acl2-number-list-equiv (cons x y)
                                      (cons x y-equiv)))
     :rule-classes :congruence)

    Theorem: consp-of-acl2-number-list-fix

    (defthm consp-of-acl2-number-list-fix
      (equal (consp (acl2-number-list-fix x))
             (consp x)))

    Theorem: acl2-number-list-fix-under-iff

    (defthm acl2-number-list-fix-under-iff
      (iff (acl2-number-list-fix x)
           (consp x)))

    Theorem: acl2-number-list-fix-of-cons

    (defthm acl2-number-list-fix-of-cons
      (equal (acl2-number-list-fix (cons a x))
             (cons (fix a)
                   (acl2-number-list-fix x))))

    Theorem: len-of-acl2-number-list-fix

    (defthm len-of-acl2-number-list-fix
      (equal (len (acl2-number-list-fix x))
             (len x)))

    Theorem: acl2-number-list-fix-of-append

    (defthm acl2-number-list-fix-of-append
      (equal (acl2-number-list-fix (append std::a std::b))
             (append (acl2-number-list-fix std::a)
                     (acl2-number-list-fix std::b))))

    Theorem: acl2-number-list-fix-of-repeat

    (defthm acl2-number-list-fix-of-repeat
      (equal (acl2-number-list-fix (repeat n x))
             (repeat n (fix x))))

    Theorem: list-equiv-refines-acl2-number-list-equiv

    (defthm list-equiv-refines-acl2-number-list-equiv
      (implies (list-equiv x y)
               (acl2-number-list-equiv x y))
      :rule-classes :refinement)

    Theorem: nth-of-acl2-number-list-fix

    (defthm nth-of-acl2-number-list-fix
      (equal (nth n (acl2-number-list-fix x))
             (if (< (nfix n) (len x))
                 (fix (nth n x))
               nil)))

    Theorem: acl2-number-list-equiv-implies-acl2-number-list-equiv-append-1

    (defthm
         acl2-number-list-equiv-implies-acl2-number-list-equiv-append-1
      (implies (acl2-number-list-equiv x fty::x-equiv)
               (acl2-number-list-equiv (append x y)
                                       (append fty::x-equiv y)))
      :rule-classes (:congruence))

    Theorem: acl2-number-list-equiv-implies-acl2-number-list-equiv-append-2

    (defthm
         acl2-number-list-equiv-implies-acl2-number-list-equiv-append-2
      (implies (acl2-number-list-equiv y fty::y-equiv)
               (acl2-number-list-equiv (append x y)
                                       (append x fty::y-equiv)))
      :rule-classes (:congruence))

    Theorem: acl2-number-list-equiv-implies-acl2-number-list-equiv-nthcdr-2

    (defthm
         acl2-number-list-equiv-implies-acl2-number-list-equiv-nthcdr-2
      (implies (acl2-number-list-equiv l l-equiv)
               (acl2-number-list-equiv (nthcdr n l)
                                       (nthcdr n l-equiv)))
      :rule-classes (:congruence))

    Theorem: acl2-number-list-equiv-implies-acl2-number-list-equiv-take-2

    (defthm acl2-number-list-equiv-implies-acl2-number-list-equiv-take-2
      (implies (acl2-number-list-equiv l l-equiv)
               (acl2-number-list-equiv (take n l)
                                       (take n l-equiv)))
      :rule-classes (:congruence))