• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
          • Member
            • Std/lists/member
              • Basic-member-lemmas
            • Append
            • List
            • Nth
            • Len
            • True-listp
            • String-listp
            • Nat-listp
            • Character-listp
            • Symbol-listp
            • True-list-listp
            • Length
            • Search
            • Intersection$
            • Union$
            • Remove-duplicates
            • Position
            • Update-nth
            • Take
            • Set-difference$
            • Nthcdr
            • Subsetp
            • No-duplicatesp
            • Concatenate
            • Remove
            • Remove1
            • Intersectp
            • Endp
            • Keyword-value-listp
            • Integer-listp
            • Reverse
            • Add-to-set
            • List-utilities
            • Set-size
            • Revappend
            • Subseq
            • Make-list
            • Lists-light
            • Boolean-listp
            • Butlast
            • Pairlis$
            • Substitute
            • Count
            • Keyword-listp
            • List*
            • Last
            • Eqlable-listp
            • Integer-range-listp
            • Rational-listp
            • Pos-listp
            • Evens
            • Atom-listp
            • ACL2-number-listp
            • Typed-list-utilities
            • Odds
            • List$
            • Listp
            • Standard-char-listp
            • Last-cdr
            • Pairlis
            • Proper-consp
            • Improper-consp
            • Pairlis-x2
            • Pairlis-x1
            • Merge-sort-lexorder
            • Fix-true-list
            • Real-listp
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Std/lists/member

    Basic-member-lemmas

    Very basic lemmas about member.

    Definitions and Theorems

    Theorem: member-when-atom

    (defthm member-when-atom
      (implies (atom x) (not (member a x))))

    Theorem: member-of-cons

    (defthm member-of-cons
      (equal (member a (cons b x))
             (if (equal a b)
                 (cons b x)
               (member a x))))

    Theorem: member-of-car

    (defthm member-of-car
      (equal (member (car x) x)
             (if (consp x) x nil)))

    Theorem: member-of-append

    (defthm member-of-append
      (iff (member a (append x y))
           (or (member a x) (member a y))))

    Theorem: member-of-set-difference-equal

    (defthm member-of-set-difference-equal
      (iff (member a (set-difference-equal x y))
           (and (member a x) (not (member a y)))))

    Theorem: member-of-intersection-equal

    (defthm member-of-intersection-equal
      (iff (member a (intersection-equal x y))
           (and (member a x) (member a y))))

    Theorem: member-of-remove

    (defthm member-of-remove
      (iff (member a (remove b x))
           (and (member a x) (not (equal a b)))))

    Theorem: acl2-count-when-member

    (defthm acl2-count-when-member
      (implies (member a x)
               (< (acl2-count a) (acl2-count x)))
      :rule-classes ((:rewrite) (:linear)))

    Theorem: member-self

    (defthm member-self (not (member x x)))

    Theorem: element-p-when-member-equal-of-element-list-not-negated

    (defthm element-p-when-member-equal-of-element-list-not-negated
      (and (implies (and (member-equal a x)
                         (element-list-p x))
                    (element-p a))
           (implies (and (element-list-p x)
                         (member-equal a x))
                    (element-p a)))
      :rule-classes :rewrite)

    Theorem: element-p-when-member-equal-of-element-list-negated

    (defthm element-p-when-member-equal-of-element-list-negated
      (and (implies (and (member-equal a x)
                         (element-list-p x))
                    (not (non-element-p a)))
           (implies (and (element-list-p x)
                         (member-equal a x))
                    (not (non-element-p a))))
      :rule-classes :rewrite)

    Theorem: member-of-element-xformer-in-elementlist-projection

    (defthm member-of-element-xformer-in-elementlist-projection
      (implies (member k x)
               (member (element-xformer k)
                       (elementlist-projection x)))
      :rule-classes :rewrite)

    Theorem: member-in-elementlist-mapappend

    (defthm member-in-elementlist-mapappend
      (implies (and (member k (element-listxformer j))
                    (member j x))
               (member k (elementlist-mapappend x)))
      :rule-classes :rewrite)