• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
          • Member
          • Append
          • List
          • Nth
          • Len
          • True-listp
          • String-listp
          • Nat-listp
          • Character-listp
          • Symbol-listp
          • True-list-listp
          • Length
          • Search
          • Intersection$
          • Union$
          • Remove-duplicates
          • Position
          • Update-nth
          • Take
          • Set-difference$
          • Nthcdr
          • Subsetp
            • Std/lists/subsetp
              • Basic-subsetp-lemmas
            • No-duplicatesp
            • Concatenate
            • Remove
            • Remove1
            • Intersectp
            • Endp
            • Keyword-value-listp
            • Integer-listp
            • Reverse
            • Add-to-set
            • List-utilities
            • Set-size
            • Revappend
            • Subseq
            • Make-list
            • Lists-light
            • Boolean-listp
            • Butlast
            • Pairlis$
            • Substitute
            • Count
            • Keyword-listp
            • List*
            • Last
            • Eqlable-listp
            • Integer-range-listp
            • Rational-listp
            • Pos-listp
            • Evens
            • Atom-listp
            • ACL2-number-listp
            • Typed-list-utilities
            • Odds
            • List$
            • Listp
            • Standard-char-listp
            • Last-cdr
            • Pairlis
            • Proper-consp
            • Improper-consp
            • Pairlis-x2
            • Pairlis-x1
            • Merge-sort-lexorder
            • Fix-true-list
            • Real-listp
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Std/lists/subsetp

    Basic-subsetp-lemmas

    Very basic lemmas about subsetp.

    Definitions and Theorems

    Theorem: subsetp-when-atom-left

    (defthm subsetp-when-atom-left
      (implies (atom x) (subsetp x y)))

    Theorem: subsetp-when-atom-right

    (defthm subsetp-when-atom-right
      (implies (atom y)
               (equal (subsetp x y) (atom x))))

    Theorem: subsetp-nil

    (defthm subsetp-nil (subsetp nil x))

    Theorem: subsetp-of-cons

    (defthm subsetp-of-cons
      (equal (subsetp (cons a x) y)
             (if (member a y) (subsetp x y) nil)))

    Theorem: subsetp-member

    (defthm subsetp-member
      (implies (and (member a x) (subsetp x y))
               (member a y))
      :rule-classes
      ((:rewrite)
       (:rewrite :corollary (implies (and (subsetp x y) (member a x))
                                     (member a y)))
       (:rewrite
            :corollary (implies (and (not (member a y)) (subsetp x y))
                                (not (member a x))))
       (:rewrite
            :corollary (implies (and (subsetp x y) (not (member a y)))
                                (not (member a x))))))

    Theorem: element-list-p-when-subsetp-equal-true-list

    (defthm element-list-p-when-subsetp-equal-true-list
      (implies (and (subsetp-equal x y)
                    (element-list-p y)
                    (not (element-list-final-cdr-p t)))
               (equal (element-list-p x)
                      (true-listp x)))
      :rule-classes :rewrite)

    Theorem: element-list-p-when-subsetp-equal-non-true-list

    (defthm element-list-p-when-subsetp-equal-non-true-list
      (implies (and (subsetp-equal x y)
                    (element-list-p y)
                    (element-list-final-cdr-p t))
               (element-list-p x))
      :rule-classes :rewrite)

    Theorem: subsetp-of-elementlist-projection-when-subsetp

    (defthm subsetp-of-elementlist-projection-when-subsetp
      (implies (subsetp x y)
               (subsetp (elementlist-projection x)
                        (elementlist-projection y)))
      :rule-classes :rewrite)

    Theorem: subsetp-refl

    (defthm subsetp-refl (subsetp x x))

    Theorem: subsetp-trans

    (defthm subsetp-trans
      (implies (and (subsetp x y) (subsetp y z))
               (subsetp x z)))

    Theorem: subsetp-trans2

    (defthm subsetp-trans2
      (implies (and (subsetp y z) (subsetp x y))
               (subsetp x z)))

    Theorem: subsetp-implies-subsetp-cdr

    (defthm subsetp-implies-subsetp-cdr
      (implies (subsetp x y)
               (subsetp (cdr x) y)))

    Theorem: subsetp-of-cdr

    (defthm subsetp-of-cdr
      (subsetp (cdr x) x))

    Theorem: subsetp-cons-same

    (defthm subsetp-cons-same
      (implies (subsetp a b)
               (subsetp (cons x a) (cons x b))))

    Theorem: subsetp-cons-2

    (defthm subsetp-cons-2
      (implies (subsetp a b)
               (subsetp a (cons x b))))

    Theorem: subsetp-append1

    (defthm subsetp-append1
      (equal (subsetp (append a b) c)
             (and (subsetp a c) (subsetp b c))))

    Theorem: subsetp-append2

    (defthm subsetp-append2
      (subsetp a (append a b)))

    Theorem: subsetp-append3

    (defthm subsetp-append3
      (subsetp b (append a b)))

    Theorem: subsetp-of-append-when-subset-of-either

    (defthm subsetp-of-append-when-subset-of-either
      (implies (or (subsetp a b) (subsetp a c))
               (subsetp a (append b c))))

    Theorem: subsetp-car-member

    (defthm subsetp-car-member
      (implies (and (subsetp x y) (consp x))
               (member (car x) y)))

    Theorem: subsetp-intersection-equal

    (defthm subsetp-intersection-equal
      (iff (subsetp a (intersection-equal b c))
           (and (subsetp a b) (subsetp a c))))

    Theorem: subsetp-of-elementlist-mapappend-when-subsetp

    (defthm subsetp-of-elementlist-mapappend-when-subsetp
      (implies (subsetp x y)
               (subsetp (elementlist-mapappend x)
                        (elementlist-mapappend y)))
      :rule-classes :rewrite)

    Theorem: set-equiv-congruence-over-elementlist-mapappend

    (defthm set-equiv-congruence-over-elementlist-mapappend
      (implies (set-equiv x y)
               (set-equiv (elementlist-mapappend x)
                          (elementlist-mapappend y)))
      :rule-classes :congruence)