Basic equivalence relation for named-lit-list-map structures.
Function:
(defun named-lit-list-map-equiv$inline (x acl2::y) (declare (xargs :guard (and (named-lit-list-map-p x) (named-lit-list-map-p acl2::y)))) (equal (named-lit-list-map-fix x) (named-lit-list-map-fix acl2::y)))
Theorem:
(defthm named-lit-list-map-equiv-is-an-equivalence (and (booleanp (named-lit-list-map-equiv x y)) (named-lit-list-map-equiv x x) (implies (named-lit-list-map-equiv x y) (named-lit-list-map-equiv y x)) (implies (and (named-lit-list-map-equiv x y) (named-lit-list-map-equiv y z)) (named-lit-list-map-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm named-lit-list-map-equiv-implies-equal-named-lit-list-map-fix-1 (implies (named-lit-list-map-equiv x x-equiv) (equal (named-lit-list-map-fix x) (named-lit-list-map-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm named-lit-list-map-fix-under-named-lit-list-map-equiv (named-lit-list-map-equiv (named-lit-list-map-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-named-lit-list-map-fix-1-forward-to-named-lit-list-map-equiv (implies (equal (named-lit-list-map-fix x) acl2::y) (named-lit-list-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-named-lit-list-map-fix-2-forward-to-named-lit-list-map-equiv (implies (equal x (named-lit-list-map-fix acl2::y)) (named-lit-list-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm named-lit-list-map-equiv-of-named-lit-list-map-fix-1-forward (implies (named-lit-list-map-equiv (named-lit-list-map-fix x) acl2::y) (named-lit-list-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm named-lit-list-map-equiv-of-named-lit-list-map-fix-2-forward (implies (named-lit-list-map-equiv x (named-lit-list-map-fix acl2::y)) (named-lit-list-map-equiv x acl2::y)) :rule-classes :forward-chaining)