Basic equivalence relation for asm-input structures.
Function:
(defun asm-input-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (asm-inputp acl2::x) (asm-inputp acl2::y)))) (equal (asm-input-fix acl2::x) (asm-input-fix acl2::y)))
Theorem:
(defthm asm-input-equiv-is-an-equivalence (and (booleanp (asm-input-equiv x y)) (asm-input-equiv x x) (implies (asm-input-equiv x y) (asm-input-equiv y x)) (implies (and (asm-input-equiv x y) (asm-input-equiv y z)) (asm-input-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm asm-input-equiv-implies-equal-asm-input-fix-1 (implies (asm-input-equiv acl2::x x-equiv) (equal (asm-input-fix acl2::x) (asm-input-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm asm-input-fix-under-asm-input-equiv (asm-input-equiv (asm-input-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-asm-input-fix-1-forward-to-asm-input-equiv (implies (equal (asm-input-fix acl2::x) acl2::y) (asm-input-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-asm-input-fix-2-forward-to-asm-input-equiv (implies (equal acl2::x (asm-input-fix acl2::y)) (asm-input-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm asm-input-equiv-of-asm-input-fix-1-forward (implies (asm-input-equiv (asm-input-fix acl2::x) acl2::y) (asm-input-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm asm-input-equiv-of-asm-input-fix-2-forward (implies (asm-input-equiv acl2::x (asm-input-fix acl2::y)) (asm-input-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)