• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
      • Std/lists
      • Omaps
        • Defomap
        • Update
        • Mapp
        • Assoc
          • Update*
          • From-lists
          • Keys
          • List-lookup
          • Size
          • Compatiblep
          • Submap
          • Tail
          • Restrict
          • Head
          • Update-induction-on-maps
          • Rlookup
          • Lookup
          • List-notin
          • Emptyp
          • Rlookup*
          • Map
          • Lookup*
          • Values
          • List-in
          • Delete*
          • In*
          • Delete
          • From-alist
          • Mfix
          • Head-val
          • Head-key
          • Omap-induction2
          • Omap-order-rules
        • Std/alists
        • Obags
        • Std/util
        • Std/strings
        • Std/osets
        • Std/io
        • Std/basic
        • Std/system
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Omaps

    Assoc

    Find the pair in the omap with a given key.

    Signature
    (assoc key map) → pair?
    Arguments
    map — Guard (mapp map).
    Returns
    pair? — Type (listp pair?).

    If the key is present, return the cons pair with the key. Otherwise, return nil.

    This is similar to common-lisp::assoc for alists.

    Definitions and Theorems

    Function: assoc

    (defun assoc (key map)
      (declare (xargs :guard (mapp map)))
      (let ((__function__ 'assoc))
        (declare (ignorable __function__))
        (cond ((emptyp map) nil)
              (t (mv-let (key0 val0)
                         (head map)
                   (cond ((equal key key0) (cons key0 val0))
                         (t (assoc key (tail map)))))))))

    Theorem: listp-of-assoc

    (defthm listp-of-assoc
      (b* ((pair? (assoc key map)))
        (listp pair?))
      :rule-classes :rewrite)

    Theorem: assoc-of-mfix

    (defthm assoc-of-mfix
      (equal (assoc key (mfix map))
             (assoc key map)))

    Theorem: assoc-when-emptyp

    (defthm assoc-when-emptyp
      (implies (emptyp map)
               (equal (assoc key map) nil))
      :rule-classes (:rewrite :type-prescription))

    Theorem: assoc-of-head

    (defthm assoc-of-head
      (iff (assoc (mv-nth 0 (head map)) map)
           (not (emptyp map))))

    Theorem: assoc-when-assoc-tail

    (defthm assoc-when-assoc-tail
      (implies (assoc key (tail map))
               (assoc key map)))

    Theorem: acl2-count-assoc-<-map

    (defthm acl2-count-assoc-<-map
      (implies (not (emptyp map))
               (< (acl2-count (assoc key map))
                  (acl2-count map))))

    Theorem: assoc-of-update

    (defthm assoc-of-update
      (equal (assoc key1 (update key val map))
             (if (equal key1 key)
                 (cons key val)
               (assoc key1 map))))

    Theorem: assoc-of-update*

    (defthm assoc-of-update*
      (equal (assoc key (update* map1 map2))
             (or (assoc key map1) (assoc key map2))))

    Theorem: consp-of-assoc-of-update*

    (defthm consp-of-assoc-of-update*
      (equal (consp (assoc key (update* map1 map2)))
             (or (consp (assoc key map1))
                 (consp (assoc key map2)))))

    Theorem: update-of-cdr-of-assoc-when-assoc

    (defthm update-of-cdr-of-assoc-when-assoc
      (implies (assoc k m)
               (equal (update k (cdr (assoc k m)) m)
                      m)))

    Theorem: consp-of-assoc-iff-assoc

    (defthm consp-of-assoc-iff-assoc
      (iff (consp (assoc key map))
           (assoc key map)))

    Theorem: head-key-minimal

    (defthm head-key-minimal
      (implies (<< key (mv-nth 0 (head map)))
               (not (assoc key map))))

    Theorem: head-key-not-assoc-tail

    (defthm head-key-not-assoc-tail
      (not (assoc (mv-nth 0 (head map))
                  (tail map))))

    Theorem: assoc-of-tail-when-assoc-of-tail

    (defthm assoc-of-tail-when-assoc-of-tail
      (implies (assoc key (tail map))
               (equal (assoc key (tail map))
                      (assoc key map))))

    Theorem: assoc-of-tail-when-not-head

    (defthm assoc-of-tail-when-not-head
      (implies (not (equal key (mv-nth 0 (head map))))
               (equal (assoc key (tail map))
                      (assoc key map))))

    Theorem: assoc-of-mfix-map

    (defthm assoc-of-mfix-map
      (equal (assoc key (mfix map))
             (assoc key map)))

    Theorem: assoc-mequiv-congruence-on-map

    (defthm assoc-mequiv-congruence-on-map
      (implies (mequiv map map-equiv)
               (equal (assoc key map)
                      (assoc key map-equiv)))
      :rule-classes :congruence)