• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
          • Defbyte
          • Defresult
          • Fold
          • Specific-types
          • Defsubtype
          • Defset
          • Defflatsum
          • Deflist-of-len
          • Pos-list
          • Defomap
          • Defbytelist
          • Defbyte-standard-instances
          • Deffixtype-alias
          • Defbytelist-standard-instances
          • Defunit
          • Byte-list
          • Database
          • Byte
          • String-option
          • Pos-option
          • Nibble
          • Nat-option
          • Ubyte32-option
          • Byte-list20
          • Byte-list32
          • Byte-list64
          • Pseudo-event-form
          • Natoption/natoptionlist
          • Nati
          • Character-list
          • Nat/natlist
          • Maybe-string
          • Nibble-list
          • Natoption/natoptionlist-result
          • Nat/natlist-result
          • Nat-option-list-result
          • Set
          • String-result
          • String-list-result
          • Nat-result
          • Nat-option-result
          • Nat-list-result
          • Maybe-string-result
          • Integer-result
          • Character-result
          • Character-list-result
          • Boolean-result
          • Map
          • Dependencies
          • Bag
          • Pos-set
          • Hex-digit-char-list
          • Dec-digit-char-list
          • Pseudo-event-form-list
          • Nat-option-list
          • Character-any-map
          • Any-nat-map
          • Symbol-set
          • String-set
          • Nat-set
          • Character-set
          • Oct-digit-char-list
            • Oct-digit-char-list-fix
              • Oct-digit-char-list-equiv
            • Bin-digit-char-list
            • Bit-list
          • Isar
          • Kestrel-utilities
          • Set
          • C
          • Soft
          • Bv
          • Imp-language
          • Ethereum
          • Event-macros
          • Java
          • Riscv
          • Bitcoin
          • Zcash
          • Yul
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Axe
          • Lists-light
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Oct-digit-char-list

    Oct-digit-char-list-fix

    (oct-digit-char-list-fix x) is a usual ACL2::fty list fixing function.

    Signature
    (oct-digit-char-list-fix x) → fty::newx
    Arguments
    x — Guard (oct-digit-char-listp x).
    Returns
    fty::newx — Type (oct-digit-char-listp fty::newx).

    In the logic, we apply oct-digit-char-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: oct-digit-char-list-fix$inline

    (defun oct-digit-char-list-fix$inline (x)
      (declare (xargs :guard (oct-digit-char-listp x)))
      (let ((acl2::__function__ 'oct-digit-char-list-fix))
        (declare (ignorable acl2::__function__))
        (mbe :logic
             (if (atom x)
                 nil
               (cons (oct-digit-char-fix (car x))
                     (oct-digit-char-list-fix (cdr x))))
             :exec x)))

    Theorem: oct-digit-char-listp-of-oct-digit-char-list-fix

    (defthm oct-digit-char-listp-of-oct-digit-char-list-fix
      (b* ((fty::newx (oct-digit-char-list-fix$inline x)))
        (oct-digit-char-listp fty::newx))
      :rule-classes :rewrite)

    Theorem: oct-digit-char-list-fix-when-oct-digit-char-listp

    (defthm oct-digit-char-list-fix-when-oct-digit-char-listp
      (implies (oct-digit-char-listp x)
               (equal (oct-digit-char-list-fix x) x)))

    Function: oct-digit-char-list-equiv$inline

    (defun oct-digit-char-list-equiv$inline (x y)
      (declare (xargs :guard (and (oct-digit-char-listp x)
                                  (oct-digit-char-listp y))))
      (equal (oct-digit-char-list-fix x)
             (oct-digit-char-list-fix y)))

    Theorem: oct-digit-char-list-equiv-is-an-equivalence

    (defthm oct-digit-char-list-equiv-is-an-equivalence
      (and (booleanp (oct-digit-char-list-equiv x y))
           (oct-digit-char-list-equiv x x)
           (implies (oct-digit-char-list-equiv x y)
                    (oct-digit-char-list-equiv y x))
           (implies (and (oct-digit-char-list-equiv x y)
                         (oct-digit-char-list-equiv y z))
                    (oct-digit-char-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: oct-digit-char-list-equiv-implies-equal-oct-digit-char-list-fix-1

    (defthm
      oct-digit-char-list-equiv-implies-equal-oct-digit-char-list-fix-1
      (implies (oct-digit-char-list-equiv x x-equiv)
               (equal (oct-digit-char-list-fix x)
                      (oct-digit-char-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: oct-digit-char-list-fix-under-oct-digit-char-list-equiv

    (defthm oct-digit-char-list-fix-under-oct-digit-char-list-equiv
      (oct-digit-char-list-equiv (oct-digit-char-list-fix x)
                                 x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-oct-digit-char-list-fix-1-forward-to-oct-digit-char-list-equiv

    (defthm
     equal-of-oct-digit-char-list-fix-1-forward-to-oct-digit-char-list-equiv
     (implies (equal (oct-digit-char-list-fix x) y)
              (oct-digit-char-list-equiv x y))
     :rule-classes :forward-chaining)

    Theorem: equal-of-oct-digit-char-list-fix-2-forward-to-oct-digit-char-list-equiv

    (defthm
     equal-of-oct-digit-char-list-fix-2-forward-to-oct-digit-char-list-equiv
     (implies (equal x (oct-digit-char-list-fix y))
              (oct-digit-char-list-equiv x y))
     :rule-classes :forward-chaining)

    Theorem: oct-digit-char-list-equiv-of-oct-digit-char-list-fix-1-forward

    (defthm
         oct-digit-char-list-equiv-of-oct-digit-char-list-fix-1-forward
      (implies (oct-digit-char-list-equiv (oct-digit-char-list-fix x)
                                          y)
               (oct-digit-char-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: oct-digit-char-list-equiv-of-oct-digit-char-list-fix-2-forward

    (defthm
         oct-digit-char-list-equiv-of-oct-digit-char-list-fix-2-forward
      (implies (oct-digit-char-list-equiv x (oct-digit-char-list-fix y))
               (oct-digit-char-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: car-of-oct-digit-char-list-fix-x-under-oct-digit-char-equiv

    (defthm car-of-oct-digit-char-list-fix-x-under-oct-digit-char-equiv
      (oct-digit-char-equiv (car (oct-digit-char-list-fix x))
                            (car x)))

    Theorem: car-oct-digit-char-list-equiv-congruence-on-x-under-oct-digit-char-equiv

    (defthm
     car-oct-digit-char-list-equiv-congruence-on-x-under-oct-digit-char-equiv
     (implies (oct-digit-char-list-equiv x x-equiv)
              (oct-digit-char-equiv (car x)
                                    (car x-equiv)))
     :rule-classes :congruence)

    Theorem: cdr-of-oct-digit-char-list-fix-x-under-oct-digit-char-list-equiv

    (defthm
       cdr-of-oct-digit-char-list-fix-x-under-oct-digit-char-list-equiv
      (oct-digit-char-list-equiv (cdr (oct-digit-char-list-fix x))
                                 (cdr x)))

    Theorem: cdr-oct-digit-char-list-equiv-congruence-on-x-under-oct-digit-char-list-equiv

    (defthm
     cdr-oct-digit-char-list-equiv-congruence-on-x-under-oct-digit-char-list-equiv
     (implies (oct-digit-char-list-equiv x x-equiv)
              (oct-digit-char-list-equiv (cdr x)
                                         (cdr x-equiv)))
     :rule-classes :congruence)

    Theorem: cons-of-oct-digit-char-fix-x-under-oct-digit-char-list-equiv

    (defthm cons-of-oct-digit-char-fix-x-under-oct-digit-char-list-equiv
      (oct-digit-char-list-equiv (cons (oct-digit-char-fix x) y)
                                 (cons x y)))

    Theorem: cons-oct-digit-char-equiv-congruence-on-x-under-oct-digit-char-list-equiv

    (defthm
     cons-oct-digit-char-equiv-congruence-on-x-under-oct-digit-char-list-equiv
     (implies (oct-digit-char-equiv x x-equiv)
              (oct-digit-char-list-equiv (cons x y)
                                         (cons x-equiv y)))
     :rule-classes :congruence)

    Theorem: cons-of-oct-digit-char-list-fix-y-under-oct-digit-char-list-equiv

    (defthm
      cons-of-oct-digit-char-list-fix-y-under-oct-digit-char-list-equiv
      (oct-digit-char-list-equiv (cons x (oct-digit-char-list-fix y))
                                 (cons x y)))

    Theorem: cons-oct-digit-char-list-equiv-congruence-on-y-under-oct-digit-char-list-equiv

    (defthm
     cons-oct-digit-char-list-equiv-congruence-on-y-under-oct-digit-char-list-equiv
     (implies (oct-digit-char-list-equiv y y-equiv)
              (oct-digit-char-list-equiv (cons x y)
                                         (cons x y-equiv)))
     :rule-classes :congruence)

    Theorem: consp-of-oct-digit-char-list-fix

    (defthm consp-of-oct-digit-char-list-fix
      (equal (consp (oct-digit-char-list-fix x))
             (consp x)))

    Theorem: oct-digit-char-list-fix-under-iff

    (defthm oct-digit-char-list-fix-under-iff
      (iff (oct-digit-char-list-fix x)
           (consp x)))

    Theorem: oct-digit-char-list-fix-of-cons

    (defthm oct-digit-char-list-fix-of-cons
      (equal (oct-digit-char-list-fix (cons a x))
             (cons (oct-digit-char-fix a)
                   (oct-digit-char-list-fix x))))

    Theorem: len-of-oct-digit-char-list-fix

    (defthm len-of-oct-digit-char-list-fix
      (equal (len (oct-digit-char-list-fix x))
             (len x)))

    Theorem: oct-digit-char-list-fix-of-append

    (defthm oct-digit-char-list-fix-of-append
      (equal (oct-digit-char-list-fix (append std::a std::b))
             (append (oct-digit-char-list-fix std::a)
                     (oct-digit-char-list-fix std::b))))

    Theorem: oct-digit-char-list-fix-of-repeat

    (defthm oct-digit-char-list-fix-of-repeat
      (equal (oct-digit-char-list-fix (repeat n x))
             (repeat n (oct-digit-char-fix x))))

    Theorem: list-equiv-refines-oct-digit-char-list-equiv

    (defthm list-equiv-refines-oct-digit-char-list-equiv
      (implies (list-equiv x y)
               (oct-digit-char-list-equiv x y))
      :rule-classes :refinement)

    Theorem: nth-of-oct-digit-char-list-fix

    (defthm nth-of-oct-digit-char-list-fix
      (equal (nth n (oct-digit-char-list-fix x))
             (if (< (nfix n) (len x))
                 (oct-digit-char-fix (nth n x))
               nil)))

    Theorem: oct-digit-char-list-equiv-implies-oct-digit-char-list-equiv-append-1

    (defthm
     oct-digit-char-list-equiv-implies-oct-digit-char-list-equiv-append-1
     (implies (oct-digit-char-list-equiv x fty::x-equiv)
              (oct-digit-char-list-equiv (append x y)
                                         (append fty::x-equiv y)))
     :rule-classes (:congruence))

    Theorem: oct-digit-char-list-equiv-implies-oct-digit-char-list-equiv-append-2

    (defthm
     oct-digit-char-list-equiv-implies-oct-digit-char-list-equiv-append-2
     (implies (oct-digit-char-list-equiv y fty::y-equiv)
              (oct-digit-char-list-equiv (append x y)
                                         (append x fty::y-equiv)))
     :rule-classes (:congruence))

    Theorem: oct-digit-char-list-equiv-implies-oct-digit-char-list-equiv-nthcdr-2

    (defthm
     oct-digit-char-list-equiv-implies-oct-digit-char-list-equiv-nthcdr-2
     (implies (oct-digit-char-list-equiv l l-equiv)
              (oct-digit-char-list-equiv (nthcdr n l)
                                         (nthcdr n l-equiv)))
     :rule-classes (:congruence))

    Theorem: oct-digit-char-list-equiv-implies-oct-digit-char-list-equiv-take-2

    (defthm
     oct-digit-char-list-equiv-implies-oct-digit-char-list-equiv-take-2
     (implies (oct-digit-char-list-equiv l l-equiv)
              (oct-digit-char-list-equiv (take n l)
                                         (take n l-equiv)))
     :rule-classes (:congruence))