(block-item-list-replace-field-access
c$::block-item-list original
linkage new1 new2 split-members)
→
fty::resultTheorem:
(defthm block-item-list-replace-field-access-type-prescription (true-listp (block-item-list-replace-field-access c$::block-item-list original linkage new1 new2 split-members)) :rule-classes :type-prescription)
Theorem:
(defthm block-item-list-replace-field-access-when-atom (implies (atom c$::block-item-list) (equal (block-item-list-replace-field-access c$::block-item-list original linkage new1 new2 split-members) nil)))
Theorem:
(defthm block-item-list-replace-field-access-of-cons (equal (block-item-list-replace-field-access (cons c$::block-item c$::block-item-list) original linkage new1 new2 split-members) (cons (block-item-replace-field-access c$::block-item original linkage new1 new2 split-members) (block-item-list-replace-field-access c$::block-item-list original linkage new1 new2 split-members))))
Theorem:
(defthm block-item-list-replace-field-access-of-append (equal (block-item-list-replace-field-access (append acl2::x acl2::y) original linkage new1 new2 split-members) (append (block-item-list-replace-field-access acl2::x original linkage new1 new2 split-members) (block-item-list-replace-field-access acl2::y original linkage new1 new2 split-members))))
Theorem:
(defthm consp-of-block-item-list-replace-field-access (equal (consp (block-item-list-replace-field-access c$::block-item-list original linkage new1 new2 split-members)) (consp c$::block-item-list)))
Theorem:
(defthm len-of-block-item-list-replace-field-access (equal (len (block-item-list-replace-field-access c$::block-item-list original linkage new1 new2 split-members)) (len c$::block-item-list)))
Theorem:
(defthm nth-of-block-item-list-replace-field-access (equal (nth acl2::n (block-item-list-replace-field-access c$::block-item-list original linkage new1 new2 split-members)) (if (< (nfix acl2::n) (len c$::block-item-list)) (block-item-replace-field-access (nth acl2::n c$::block-item-list) original linkage new1 new2 split-members) nil)))
Theorem:
(defthm block-item-list-replace-field-access-of-revappend (equal (block-item-list-replace-field-access (revappend acl2::x acl2::y) original linkage new1 new2 split-members) (revappend (block-item-list-replace-field-access acl2::x original linkage new1 new2 split-members) (block-item-list-replace-field-access acl2::y original linkage new1 new2 split-members))))
Theorem:
(defthm block-item-list-replace-field-access-of-reverse (equal (block-item-list-replace-field-access (reverse c$::block-item-list) original linkage new1 new2 split-members) (reverse (block-item-list-replace-field-access c$::block-item-list original linkage new1 new2 split-members))))