Abstract a
(abs-import-declaration tree) → decl
Function:
(defun abs-import-declaration (tree) (declare (xargs :guard (abnf::treep tree))) (let ((__function__ 'abs-import-declaration)) (declare (ignorable __function__)) (b* (((okf (abnf::tree-list-tuple3 sub)) (abnf::check-tree-nonleaf-3 tree "import-declaration")) ((okf tree) (abnf::check-tree-list-1 sub.1st)) ((okf &) (abnf::check-tree-schars tree "import")) ((okf tree) (abnf::check-tree-list-1 sub.2nd)) ((okf progid) (abs-program-id tree)) ((okf tree) (abnf::check-tree-list-1 sub.3rd)) ((okf &) (abnf::check-tree-ichars tree ";"))) (make-importdecl :program progid))))
Theorem:
(defthm importdecl-resultp-of-abs-import-declaration (b* ((decl (abs-import-declaration tree))) (importdecl-resultp decl)) :rule-classes :rewrite)
Theorem:
(defthm abs-import-declaration-of-tree-fix-tree (equal (abs-import-declaration (abnf::tree-fix tree)) (abs-import-declaration tree)))
Theorem:
(defthm abs-import-declaration-tree-equiv-congruence-on-tree (implies (abnf::tree-equiv tree tree-equiv) (equal (abs-import-declaration tree) (abs-import-declaration tree-equiv))) :rule-classes :congruence)