Fixing function for char/container structures.
(char/container-fix x) → new-x
Function:
(defun char/container-fix$inline (x) (declare (xargs :guard (char/container-p x))) (let ((__function__ 'char/container-fix)) (declare (ignorable __function__)) (mbe :logic (case (char/container-kind x) (:char (b* ((get (char-fix (std::da-nth 0 (cdr x))))) (cons :char (list get)))) (:container (cons :container (list)))) :exec x)))
Theorem:
(defthm char/container-p-of-char/container-fix (b* ((new-x (char/container-fix$inline x))) (char/container-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm char/container-fix-when-char/container-p (implies (char/container-p x) (equal (char/container-fix x) x)))
Function:
(defun char/container-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (char/container-p acl2::x) (char/container-p acl2::y)))) (equal (char/container-fix acl2::x) (char/container-fix acl2::y)))
Theorem:
(defthm char/container-equiv-is-an-equivalence (and (booleanp (char/container-equiv x y)) (char/container-equiv x x) (implies (char/container-equiv x y) (char/container-equiv y x)) (implies (and (char/container-equiv x y) (char/container-equiv y z)) (char/container-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm char/container-equiv-implies-equal-char/container-fix-1 (implies (char/container-equiv acl2::x x-equiv) (equal (char/container-fix acl2::x) (char/container-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm char/container-fix-under-char/container-equiv (char/container-equiv (char/container-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-char/container-fix-1-forward-to-char/container-equiv (implies (equal (char/container-fix acl2::x) acl2::y) (char/container-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-char/container-fix-2-forward-to-char/container-equiv (implies (equal acl2::x (char/container-fix acl2::y)) (char/container-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm char/container-equiv-of-char/container-fix-1-forward (implies (char/container-equiv (char/container-fix acl2::x) acl2::y) (char/container-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm char/container-equiv-of-char/container-fix-2-forward (implies (char/container-equiv acl2::x (char/container-fix acl2::y)) (char/container-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm char/container-kind$inline-of-char/container-fix-x (equal (char/container-kind$inline (char/container-fix x)) (char/container-kind$inline x)))
Theorem:
(defthm char/container-kind$inline-char/container-equiv-congruence-on-x (implies (char/container-equiv x x-equiv) (equal (char/container-kind$inline x) (char/container-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-char/container-fix (consp (char/container-fix x)) :rule-classes :type-prescription)