Basic equivalence relation for newline structures.
Function:
(defun newline-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (newlinep acl2::x) (newlinep acl2::y)))) (equal (newline-fix acl2::x) (newline-fix acl2::y)))
Theorem:
(defthm newline-equiv-is-an-equivalence (and (booleanp (newline-equiv x y)) (newline-equiv x x) (implies (newline-equiv x y) (newline-equiv y x)) (implies (and (newline-equiv x y) (newline-equiv y z)) (newline-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm newline-equiv-implies-equal-newline-fix-1 (implies (newline-equiv acl2::x x-equiv) (equal (newline-fix acl2::x) (newline-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm newline-fix-under-newline-equiv (newline-equiv (newline-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-newline-fix-1-forward-to-newline-equiv (implies (equal (newline-fix acl2::x) acl2::y) (newline-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-newline-fix-2-forward-to-newline-equiv (implies (equal acl2::x (newline-fix acl2::y)) (newline-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm newline-equiv-of-newline-fix-1-forward (implies (newline-equiv (newline-fix acl2::x) acl2::y) (newline-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm newline-equiv-of-newline-fix-2-forward (implies (newline-equiv acl2::x (newline-fix acl2::y)) (newline-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)