Fixing function for newline structures.
Function:
(defun newline-fix$inline (x) (declare (xargs :guard (newlinep x))) (mbe :logic (case (newline-kind x) (:lf (cons :lf (list))) (:cr (cons :cr (list))) (:crlf (cons :crlf (list)))) :exec x))
Theorem:
(defthm newlinep-of-newline-fix (b* ((new-x (newline-fix$inline x))) (newlinep new-x)) :rule-classes :rewrite)
Theorem:
(defthm newline-fix-when-newlinep (implies (newlinep x) (equal (newline-fix x) x)))
Function:
(defun newline-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (newlinep acl2::x) (newlinep acl2::y)))) (equal (newline-fix acl2::x) (newline-fix acl2::y)))
Theorem:
(defthm newline-equiv-is-an-equivalence (and (booleanp (newline-equiv x y)) (newline-equiv x x) (implies (newline-equiv x y) (newline-equiv y x)) (implies (and (newline-equiv x y) (newline-equiv y z)) (newline-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm newline-equiv-implies-equal-newline-fix-1 (implies (newline-equiv acl2::x x-equiv) (equal (newline-fix acl2::x) (newline-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm newline-fix-under-newline-equiv (newline-equiv (newline-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-newline-fix-1-forward-to-newline-equiv (implies (equal (newline-fix acl2::x) acl2::y) (newline-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-newline-fix-2-forward-to-newline-equiv (implies (equal acl2::x (newline-fix acl2::y)) (newline-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm newline-equiv-of-newline-fix-1-forward (implies (newline-equiv (newline-fix acl2::x) acl2::y) (newline-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm newline-equiv-of-newline-fix-2-forward (implies (newline-equiv acl2::x (newline-fix acl2::y)) (newline-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm newline-kind$inline-of-newline-fix-x (equal (newline-kind$inline (newline-fix x)) (newline-kind$inline x)))
Theorem:
(defthm newline-kind$inline-newline-equiv-congruence-on-x (implies (newline-equiv x x-equiv) (equal (newline-kind$inline x) (newline-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-newline-fix (consp (newline-fix x)) :rule-classes :type-prescription)
Theorem:
(defthm newline-fix$inline-of-newline-fix-x (equal (newline-fix$inline (newline-fix x)) (newline-fix$inline x)))
Theorem:
(defthm newline-fix$inline-newline-equiv-congruence-on-x (implies (newline-equiv x x-equiv) (equal (newline-fix$inline x) (newline-fix$inline x-equiv))) :rule-classes :congruence)