Basic equivalence relation for dexprefix structures.
Function:
(defun dexprefix-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (dexprefixp acl2::x) (dexprefixp acl2::y)))) (equal (dexprefix-fix acl2::x) (dexprefix-fix acl2::y)))
Theorem:
(defthm dexprefix-equiv-is-an-equivalence (and (booleanp (dexprefix-equiv x y)) (dexprefix-equiv x x) (implies (dexprefix-equiv x y) (dexprefix-equiv y x)) (implies (and (dexprefix-equiv x y) (dexprefix-equiv y z)) (dexprefix-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm dexprefix-equiv-implies-equal-dexprefix-fix-1 (implies (dexprefix-equiv acl2::x x-equiv) (equal (dexprefix-fix acl2::x) (dexprefix-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm dexprefix-fix-under-dexprefix-equiv (dexprefix-equiv (dexprefix-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-dexprefix-fix-1-forward-to-dexprefix-equiv (implies (equal (dexprefix-fix acl2::x) acl2::y) (dexprefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-dexprefix-fix-2-forward-to-dexprefix-equiv (implies (equal acl2::x (dexprefix-fix acl2::y)) (dexprefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm dexprefix-equiv-of-dexprefix-fix-1-forward (implies (dexprefix-equiv (dexprefix-fix acl2::x) acl2::y) (dexprefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm dexprefix-equiv-of-dexprefix-fix-2-forward (implies (dexprefix-equiv acl2::x (dexprefix-fix acl2::y)) (dexprefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)