Fixing function for dexprefix structures.
(dexprefix-fix x) → new-x
Function:
(defun dexprefix-fix$inline (x) (declare (xargs :guard (dexprefixp x))) (mbe :logic (case (dexprefix-kind x) (:locase-e (cons :locase-e nil)) (:upcase-e (cons :upcase-e nil))) :exec x))
Theorem:
(defthm dexprefixp-of-dexprefix-fix (b* ((new-x (dexprefix-fix$inline x))) (dexprefixp new-x)) :rule-classes :rewrite)
Theorem:
(defthm dexprefix-fix-when-dexprefixp (implies (dexprefixp x) (equal (dexprefix-fix x) x)))
Function:
(defun dexprefix-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (dexprefixp acl2::x) (dexprefixp acl2::y)))) (equal (dexprefix-fix acl2::x) (dexprefix-fix acl2::y)))
Theorem:
(defthm dexprefix-equiv-is-an-equivalence (and (booleanp (dexprefix-equiv x y)) (dexprefix-equiv x x) (implies (dexprefix-equiv x y) (dexprefix-equiv y x)) (implies (and (dexprefix-equiv x y) (dexprefix-equiv y z)) (dexprefix-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm dexprefix-equiv-implies-equal-dexprefix-fix-1 (implies (dexprefix-equiv acl2::x x-equiv) (equal (dexprefix-fix acl2::x) (dexprefix-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm dexprefix-fix-under-dexprefix-equiv (dexprefix-equiv (dexprefix-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-dexprefix-fix-1-forward-to-dexprefix-equiv (implies (equal (dexprefix-fix acl2::x) acl2::y) (dexprefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-dexprefix-fix-2-forward-to-dexprefix-equiv (implies (equal acl2::x (dexprefix-fix acl2::y)) (dexprefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm dexprefix-equiv-of-dexprefix-fix-1-forward (implies (dexprefix-equiv (dexprefix-fix acl2::x) acl2::y) (dexprefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm dexprefix-equiv-of-dexprefix-fix-2-forward (implies (dexprefix-equiv acl2::x (dexprefix-fix acl2::y)) (dexprefix-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm dexprefix-kind$inline-of-dexprefix-fix-x (equal (dexprefix-kind$inline (dexprefix-fix x)) (dexprefix-kind$inline x)))
Theorem:
(defthm dexprefix-kind$inline-dexprefix-equiv-congruence-on-x (implies (dexprefix-equiv x x-equiv) (equal (dexprefix-kind$inline x) (dexprefix-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-dexprefix-fix (consp (dexprefix-fix x)) :rule-classes :type-prescription)
Theorem:
(defthm dexprefix-fix$inline-of-dexprefix-fix-x (equal (dexprefix-fix$inline (dexprefix-fix x)) (dexprefix-fix$inline x)))
Theorem:
(defthm dexprefix-fix$inline-dexprefix-equiv-congruence-on-x (implies (dexprefix-equiv x x-equiv) (equal (dexprefix-fix$inline x) (dexprefix-fix$inline x-equiv))) :rule-classes :congruence)