Print an assembler qualifier.
Function:
(defun print-asm-qual (qual pstate) (declare (xargs :guard (and (asm-qualp qual) (pristatep pstate)))) (let ((__function__ 'print-asm-qual)) (declare (ignorable __function__)) (asm-qual-case qual :volatile (keyword-uscores-case qual.uscores :none (print-astring "volatile" pstate) :start (print-astring "__volatile" pstate) :both (print-astring "__volatile__" pstate)) :inline (keyword-uscores-case qual.uscores :none (print-astring "inline" pstate) :start (print-astring "__inline" pstate) :both (print-astring "__inline__" pstate)) :goto (print-astring "goto" pstate))))
Theorem:
(defthm pristatep-of-print-asm-qual (b* ((new-pstate (print-asm-qual qual pstate))) (pristatep new-pstate)) :rule-classes :rewrite)
Theorem:
(defthm pristate->gcc-of-print-asm-qual (b* ((?new-pstate (print-asm-qual qual pstate))) (equal (pristate->gcc new-pstate) (pristate->gcc pstate))))
Theorem:
(defthm print-asm-qual-of-asm-qual-fix-qual (equal (print-asm-qual (asm-qual-fix qual) pstate) (print-asm-qual qual pstate)))
Theorem:
(defthm print-asm-qual-asm-qual-equiv-congruence-on-qual (implies (asm-qual-equiv qual qual-equiv) (equal (print-asm-qual qual pstate) (print-asm-qual qual-equiv pstate))) :rule-classes :congruence)
Theorem:
(defthm print-asm-qual-of-pristate-fix-pstate (equal (print-asm-qual qual (pristate-fix pstate)) (print-asm-qual qual pstate)))
Theorem:
(defthm print-asm-qual-pristate-equiv-congruence-on-pstate (implies (pristate-equiv pstate pstate-equiv) (equal (print-asm-qual qual pstate) (print-asm-qual qual pstate-equiv))) :rule-classes :congruence)