Fixing function for asm-qual structures.
Function:
(defun asm-qual-fix$inline (x) (declare (xargs :guard (asm-qualp x))) (mbe :logic (case (asm-qual-kind x) (:volatile (b* ((uscores (keyword-uscores-fix (cdr x)))) (cons :volatile uscores))) (:inline (b* ((uscores (keyword-uscores-fix (cdr x)))) (cons :inline uscores))) (:goto (cons :goto nil))) :exec x))
Theorem:
(defthm asm-qualp-of-asm-qual-fix (b* ((new-x (asm-qual-fix$inline x))) (asm-qualp new-x)) :rule-classes :rewrite)
Theorem:
(defthm asm-qual-fix-when-asm-qualp (implies (asm-qualp x) (equal (asm-qual-fix x) x)))
Function:
(defun asm-qual-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (asm-qualp acl2::x) (asm-qualp acl2::y)))) (equal (asm-qual-fix acl2::x) (asm-qual-fix acl2::y)))
Theorem:
(defthm asm-qual-equiv-is-an-equivalence (and (booleanp (asm-qual-equiv x y)) (asm-qual-equiv x x) (implies (asm-qual-equiv x y) (asm-qual-equiv y x)) (implies (and (asm-qual-equiv x y) (asm-qual-equiv y z)) (asm-qual-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm asm-qual-equiv-implies-equal-asm-qual-fix-1 (implies (asm-qual-equiv acl2::x x-equiv) (equal (asm-qual-fix acl2::x) (asm-qual-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm asm-qual-fix-under-asm-qual-equiv (asm-qual-equiv (asm-qual-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-asm-qual-fix-1-forward-to-asm-qual-equiv (implies (equal (asm-qual-fix acl2::x) acl2::y) (asm-qual-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-asm-qual-fix-2-forward-to-asm-qual-equiv (implies (equal acl2::x (asm-qual-fix acl2::y)) (asm-qual-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm asm-qual-equiv-of-asm-qual-fix-1-forward (implies (asm-qual-equiv (asm-qual-fix acl2::x) acl2::y) (asm-qual-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm asm-qual-equiv-of-asm-qual-fix-2-forward (implies (asm-qual-equiv acl2::x (asm-qual-fix acl2::y)) (asm-qual-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm asm-qual-kind$inline-of-asm-qual-fix-x (equal (asm-qual-kind$inline (asm-qual-fix x)) (asm-qual-kind$inline x)))
Theorem:
(defthm asm-qual-kind$inline-asm-qual-equiv-congruence-on-x (implies (asm-qual-equiv x x-equiv) (equal (asm-qual-kind$inline x) (asm-qual-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-asm-qual-fix (consp (asm-qual-fix x)) :rule-classes :type-prescription)
Theorem:
(defthm asm-qual-fix$inline-of-asm-qual-fix-x (equal (asm-qual-fix$inline (asm-qual-fix x)) (asm-qual-fix$inline x)))
Theorem:
(defthm asm-qual-fix$inline-asm-qual-equiv-congruence-on-x (implies (asm-qual-equiv x x-equiv) (equal (asm-qual-fix$inline x) (asm-qual-fix$inline x-equiv))) :rule-classes :congruence)