Fixing function for assert-op structures.
(assert-op-fix x) → new-x
Function:
(defun assert-op-fix$inline (x) (declare (xargs :guard (assert-opp x))) (let ((__function__ 'assert-op-fix)) (declare (ignorable __function__)) (mbe :logic (case (assert-op-kind x) (:assert.eq (cons :assert.eq (list))) (:assert.neq (cons :assert.neq (list)))) :exec x)))
Theorem:
(defthm assert-opp-of-assert-op-fix (b* ((new-x (assert-op-fix$inline x))) (assert-opp new-x)) :rule-classes :rewrite)
Theorem:
(defthm assert-op-fix-when-assert-opp (implies (assert-opp x) (equal (assert-op-fix x) x)))
Function:
(defun assert-op-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (assert-opp acl2::x) (assert-opp acl2::y)))) (equal (assert-op-fix acl2::x) (assert-op-fix acl2::y)))
Theorem:
(defthm assert-op-equiv-is-an-equivalence (and (booleanp (assert-op-equiv x y)) (assert-op-equiv x x) (implies (assert-op-equiv x y) (assert-op-equiv y x)) (implies (and (assert-op-equiv x y) (assert-op-equiv y z)) (assert-op-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm assert-op-equiv-implies-equal-assert-op-fix-1 (implies (assert-op-equiv acl2::x x-equiv) (equal (assert-op-fix acl2::x) (assert-op-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm assert-op-fix-under-assert-op-equiv (assert-op-equiv (assert-op-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-assert-op-fix-1-forward-to-assert-op-equiv (implies (equal (assert-op-fix acl2::x) acl2::y) (assert-op-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-assert-op-fix-2-forward-to-assert-op-equiv (implies (equal acl2::x (assert-op-fix acl2::y)) (assert-op-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm assert-op-equiv-of-assert-op-fix-1-forward (implies (assert-op-equiv (assert-op-fix acl2::x) acl2::y) (assert-op-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm assert-op-equiv-of-assert-op-fix-2-forward (implies (assert-op-equiv acl2::x (assert-op-fix acl2::y)) (assert-op-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm assert-op-kind$inline-of-assert-op-fix-x (equal (assert-op-kind$inline (assert-op-fix x)) (assert-op-kind$inline x)))
Theorem:
(defthm assert-op-kind$inline-assert-op-equiv-congruence-on-x (implies (assert-op-equiv x x-equiv) (equal (assert-op-kind$inline x) (assert-op-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-assert-op-fix (consp (assert-op-fix x)) :rule-classes :type-prescription)